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ABSTRACT

In this paper we investigate the co-authorship graph ob-
tained from all papers published at SIGMOD between 1975
and 2002. We find some interesting facts, for instance, the
identity of the authors who, on average, are “closest” to all
other authors at a given time. We also show that SIG-
MOD’s co-authorship graph is yet another example of a
small world—a graph topology which has received a lot of
attention recently. A companion web site for this paper can
be found at http://db.cs.ualberta.ca/coauthorship.

1. INTRODUCTION

In the Fall’2002 edition of SIGIR Forum, Smeaton et al [1]
analysed the past 25 years of SIGIR publications. Among
the analyses done, a particularly interesting one was explor-
ing the graph induced by the co-authorship relations. Given
that DBLP! is a reliable source of similar data for a num-
ber of conferences and journals, and it also makes this data
freely available in XML format, it seemed natural to do a
similar analysis for other conferences.

First, we extracted all authorship data for entries related
to publications—research and industrial full papers, demos,
tutorials and panels (chairs)—at SIGMOD conferences be-
tween 1975 and 2002 from DBLP’s XML data file. There
are several statistics one can obtain easily from this data
set. For instance, the number of authors per paper varied
between 1 and 18. However, 29% of all papers are authored
by only one author and about 90% of the papers are co-
authored by 4 authors or less. A related question is: how
many SIGMOD authors had one paper at SIGMOD, how
many had two papers, and so on? Table 1 shows these num-
bers as well as the accumulated percentage of authors that
had less or equal to a certain number of papers at SIGMOD.
About 70% of the authors have just one paper at SIGMOD.
The vast majority, i.e., over 90% of the authors have 3 or less
papers, but single individuals may have significantly larger
numbers of papers at SIGMOD, up to 32.

More information can be obtained if we use this data to
derive a co-authorship graph, as discussed in the following.

2. ITISASMALL WORLD AFTER ALL

Based on DBLP’s dataset, we built several co-authorship
graphs G (V, E), where V is the set of nodes, correspond-
ing to all SIGMOD authors up to year y, and F is the
set of edges connecting nodes from V', representing all co-
authorship relationships up to year y.
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Table 1: Number of papers per author at SIGMOD

# Papers | # Authors | % of Authors with < #Papers
32 1 100.00%
27 1 99.96%
26 1 99.92%
24 1 99.87%
21 1 99.83%
20 1 99.79%
18 1 99.75%
17 1 99.71%
16 3 99.67%
15 7 99.54%
14 3 99.25%
13 4 99.12%
12 3 98.95%
11 6 98.83%
10 4 98.58%
9 9 98.41%
8 14 98.04%
7 20 97.45%
6 27 96.62%
5 44 95.49%
4 62 93.65%
3 135 91.06%
2 362 85.42%
1 1683 70.30%

As one would expect, in no year did the co-authorship
graph consist of only one single connected component. Up
until 1998 the largest connected component had less than
half of the total number of nodes. Since then, this ratio has
been increasing smoothly. In 2002 the largest connected
component had 1413 out of 2394 nodes, i.e., about 60%
of SIGMOD authors are directly or indirectly connected
to each other. The size of the second largest component
presents a different behavior. It has never been larger than
47 (in 1989) and, as of 2002, it has only 11 nodes, i.e., less
than 0.5% of all authors.

Since some of the properties discussed next assume the
graph to be a single connected component, from now on we
consider only the largest connected component of the current
co-authorship graph, Gao02(V, E), unless noted otherwise.

According to Watts [2], the characteristic path length of
a graph G is defined as the average shortest path length
between every pair of vertices in G. The clustering coef-
ficient measures how well the direct neighbors of a vertex



are connected among themselves. For a given node v let
G'(V',E') be the subgraph where V' is the set of direct
neighbors of v and E’ is the set of edges from E between
the nodes in V’. Then, the clustering coefficient of v is

|E| ;
defined as VTV =)z Measuring the number of edges

between the direct neighbors of v as a fraction of all edges
that could theoretically exist between them. The average
clustering coefficient over all nodes in G is the clustering
coefficient of G.

Regular graphs, e.g., regular lattices, are characterized by
a high clustering degree, i.e., neighbors of nodes are very
well connected among themselves, but they also have a high
characteristic path length, meaning that distance between
nodes (if they are not direct neighbors) is typically large.

A graph G(V, E) is said to be a small world graph if
it is characterized by the following two conditions: (1) It
has a much higher clustering coefficient than similarly sized
random graphs. The clustering coefficient is in fact much
closer to the clustering coefficient of a regular graph where
the neighbors of nodes are very well connected among each
other. (2) It has only a slightly larger characteristic path
length than similarly sized random graphs. This means that
like in a random graph (and in contrast to regular graphs)
the distance between nodes, even if they are not direct neigh-
bors, is typically short, requiring only a few steps in the
shortest path between them.

Small world graphs have received a lot of attention re-
cently because they are abundant in nature and man-made
systems and the distinctive combination of high clustering
degree and small characteristic path length often has impor-
tant dynamical consequences for the network [2].

We compared the SIGMOD co-authorship graph to ran-
dom graphs built with the same number of authors (1413)
and the same number of edges (4252). The random graphs
yielded, on average, a clustering coefficient of 0.004 and
an average characteristic path length of 4.24, whereas SIG-
MOD’s graph (as of 2002) yields a clustering coefficient of
0.69 and a characteristic path length of 5.65. Hence, the cur-
rent SIGMOD co-authorship graph is a small world graph.

The typical behavior one can expect from SIGMOD’s co-
authorship graph is that, after the establishment of a sig-
nificant largest component, the characteristic path length
will vary slightly with an overall tendency to grow only very
smoothly over time. Figure 1 shows the actual evolution
of the characteristic path length for SIGMOD’s graph. Be-
tween 1975 and 1979, the characteristic path length of the
largest connected component is very small (between 2 and
3), but there is also not a significant largest connected com-
ponent, e.g., in 1979, the component sizes ordered by the
number of authors was 16, 11, 9, 8, 6, 5, 4, 3, and 2 (for
component sizes smaller than 6, several components of that
size existed). Then, in 1980 the characteristic path length
almost doubles. This is the combined effect of two events
that happened in that year. First, the number of authors
in the graph increased by 32%, the largest increase in the
history of SIGMOD (the average yearly increase, excluding
1980, is only around 9%). Second, the size of the largest con-
nected component grows by a factor of 3, from 16 to 65 (the
average yearly growth rate, excluding 1980, is only 23%).
This increase in size is not only due to the new authors
(not all of them were connected to the largest connected
component), but also a consequence of several smaller in-
dependent components being connected to the largest con-
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Figure 1: Evolution of the characteristic path

lengths.

nected component in 1980. This effect can be expected to
happen. Eventually, authors from different components who
had not previously co-authored a paper may write one to-
gether and connect the two components, thus increasing the
characteristic path length. The opposite effect, i.e., a de-
crease in the characteristic path length, can be observed in
some cases, e.g., if two authors who were not directly con-
nected, write a paper together. An extreme case of this
event can be seen in 1986 when L.A. Rowe co-authored a
paper with M. Stonebraker. At that point both where al-
ready fairly well connected to a lot of other authors, but
not directly. Their paper built a bridge or shortcut between
two well connected nodes, bringing everyone in the largest
connected component closer together. A case of the for-
mer effect (although less pronounced than in 1980) is the
increase of the characteristic path length in 1989. The rea-
son is a paper co-authored by G.M. Lohman, J.C. Freytag,
L.M. Haas, and H. Pirahesh which appeared in 1989. This
paper connected two of the smaller components of size 19
and 8 to the largest connected component of size 171 at that
time, increasing the characteristic path length significantly,
since it introduced paths between all nodes in the formerly
disconnected components via a single “bridge”.

The graph’s diameter, i.e., the mazimum distance between
two authors in the largest connected component of SIG-
MOD’s co-authorship graph follows a similar pattern as the
characteristic path length, as the network grows over time,
only its values are larger. In the beginning, the diameter of
the co-authorship graph was 6 until 1979, when it jumped to
12 over the next three years as the size of largest connected
component of the graph grew significantly. Since 1996 the
diameter has been constant at a value of 15.

3. VOYAGE TO THE CENTER OF THE CO-
AUTHORSHIP GRAPH

One property of a graph that can lead to a small world
is the existence of so-called hubs, i.e., nodes that have an
extremely high outdegree (direct co-authors) compared to
other nodes, and that act as shortcuts to connect nodes to
each other. Figure 2 indicates the existence of such hubs,
showing that a relatively small number of authors have a
very large outdegree while the majority of the authors have
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Figure 3: Minimum average path length over time.

much smaller outdegrees. In graphs where hubs exist, it
makes sense to measure degrees of centrality of nodes in or-
der to distinguish how close a node is on average to all other
nodes. We define the centrality score of a node (author)
as the average of the shortest path lengths between that
node and all others in the largest connected component. If
we sort all nodes by the ascending order of their centrality
score, we obtain, the authors that, on average, are closer
to all other authors in the co-authorship graph at the top
of that list. Figure 3 shows the evolution of the minimum
centrality score for all nodes over the given years. Author
names are displayed in the year they first hold the mini-
mum score, and the names are not repeated until another
author has a new minimum centrality score. Qualitatively,
the curve is similar to the one in Figure 1 which indicates
the strong correlation between the characteristic path length
and minimum centrality score. Note that other authors can
have centrality scores very close to the minimum one. For
instance, Table 2 shows the ten smallest centrality scores
(and their holders) as of 2002, and the largest centrality
score, out of 1413 authors, is less than three times greater
than the smallest one.

Other statistics reported in the SIGIR Forum paper, and
which can now be trivially done with SIGMOD’s data were,
for instance, who are the authors with largest numbers of

Table 2: Ten smallest centrality scores as of 2002.

Author Avg. Minimum Path Length
Michael J. Carey 3.44
Jeffrey F. Naughton 3.53
Rakesh Agrawal 3.55
Hamid Pirahesh 3.68
David J. DeWitt 3.68
Bruce G. Lindsay 3.72
Johannes Gehrke 3.76
Michael Stonebraker 3.77
Divesh Srivastava 3.80
Jennifer Widom 3.81

papers and co-authors. In SIGMOD’s case there is a strong
correlation between the number of co-authors and the num-
ber of papers a well-connected author has. Indeed, seven of
the authors in Table 2 are among the top ten authors with
most SIGMOD papers, and six of those are also among the
top ten authors with most co-authors.

4. CONCLUSION

Related analyses have been done elsewhere. A well known
example is the Erdés Number Project?, where someone’s
Erdés number is the minimum path length between that
person and P. Erdés, a famous mathematician, also in a co-
authorship graph. Another example is the Oracle of Bacon?,
where in addition to the Bacon Number, which is the equiv-
alent to the Erdos Number but with respect to actor Kevin
Bacon in the “co-starring in a movie” relationship graph,
the centrality score of every actor is also computed.

The findings discussed above are a representative sample
of interesting facts one can draw about the co-authorship
linkage within SIGMOD. As DBLP’s date becomes more
complete, it will allow one to explore this type of data even
further, e.g., analogous to the notion of centrality in the
co-authorship graph, one can compute a notion similar to
centrality scores in the cross-referencing graph.

We have also setup a web site* with a summary of similar
findings for a few other conferences, in addition to SIGMOD,
namely: PODS, VLDB and ICDE—the user can choose to
use data from either one or from all conferences combined.
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