

C. Mohan Speaks Out

on R*, Message Queues, Computer Science in India, How ARIES Came About,
Life as an IBM Fellow, and More

by Marianne Winslett

C. Mohan

http:// www.almaden.ibm.com/u/mohan/

I would like to take a moment to thank the many people who have helped me devise interview questions for
this series of columns. Often people propose questions under a promise of anonymity, so I will not name the
individuals who have suggested questions---but you know who you are! Without you, these columns would
not be possible. Thank you for your many excellent suggestions over the years.

Welcome to this installment of ACM SIGMOD Record’s series of interviews with distinguished members of
the database community. I'm Marianne Winslett, and today we are in San Diego, site of the 2003 SIGMOD
and PODS conference. I have here with me C. Mohan, who is the technical team lead for the DBCache
project at IBM Almaden Research Center. Mohan is well-known for his work on transaction commitment,
logging, and recovery, which has had a tremendous impact on how those functions are carried out in
database products from IBM and other vendors. Mohan is the primary author of the 1992 TODS paper on
ARIES that has become a staple of every database graduate student’s qualifying exam preparation, as well
as having the distinction of being the only paper ever accepted to TODS that exceeds TODS's 50-page
length limit. Mohan is an IEEE, ACM, and IBM Fellow. He has received the SIGMOD Innovations Award
and the VLDB 10-year Best Impact Paper Award. His PhD is from the University of Texas at Austin. So,
Mohan, welcome!

Thank you, Marianne, for that kind introduction.

You're very welcome. Mohan, your thesis was on a theoretical topic: managing deadlocks in database
locking protocols. Given this theoretical orientation, what led you to join industry after you graduated? And
what led you to move from database theory to the very practical ARIES work that you did soon afterwards?

SIGMOD Record, Vol. 33, No. 4, December 2004 77

Actually, although I did my thesis in a theoretical area, it was not because I was really interested in doing
theory. At the time, there was no large-scale systems project in the database area at the university where I
was, so I did what I could to quickly do a thesis and finish my PhD. But at the same time I was interested in
practical things. I'd even written a critique on SDD 1, the [pioneering] distributed database system, which
analyzed the design in great detail. I'd sent it around to various people, and I was very eager to actually get
out of school and dirty my hands by joining a place where they were doing very practical stuff. That was
one of the reasons why I didn't even apply to any universities for a job. I was keen on joining a research lab,
to get the ability to work with real systems, make changes to them, and thereby let products come out with
some new technology.

When you arrived at IBM, you joined the R* team, and you've been at IBM ever since. With perfect
hindsight, what do you wish had been done differently in R*?

I joined that project when it was midway through its life span. During those days, even in IBM Research,
we were not that closely working with the product people. As a result, R* originally was focusing more on
homogeneous distributed databases. We assumed that the different nodes in the distributed database network
were all System R nodes, and then we worked on two-phase commit protocols, replication problems, and
distributed query compilation and distributed optimization. But the problem was that since we focused only
on the homogeneous aspects of distributed databases, when the time came for commercialization, it turned
out that even IBM itself had many different relational DBMS products with somewhat different capabilities.
Solving the heterogeneous problem in the context of the R* research project would have been a more fruitful
exercise or a better starting point for that project.

Although the heterogeneous case is
a harder problem than the homo-
geneous case.

That's true.

Was it too early at that point to solve
the heterogeneous case?

I won't say that, because it was around that time that companies like Computer Corporation of America had
people working on that topic. So our focus on the homogeneous case just might have been because the
people who started the R* project were very familiar with System R, and DB2 on the mainframe was still
being developed and was not released until 1984.

When I compare the work on ARIES to other work that has had a major impact on the database field, I find
that the ARIES work seems to be qualitatively different, in that it's an agglomeration of a large number of
details that have to be handled correctly, rather than a single big new idea. This difference explains in part
why the ARIES TODS paper is so long compared to other very influential papers. Can you comment on this
perceived qualitative difference, and more generally, have we reached a point in the database world where
big new ideas will no longer play an important role?

I think the reason the ARIES paper is as long as it is primarily has to do with the fact that I was trying to be
very comprehensive in covering related pieces of work, and also tried to justify certain features that were
part of the ARIES algorithm. I looked at the past work and found that lots of important issues had not been
written up in published papers (even though they might have been addressed). Being a very details-oriented
person, I felt that the research community was not getting a good picture of what's involved in doing
concurrency control, recovery, and storage management in an efficient way with high reliability. I'd taken

Solving the heterogeneous problem in
the context of the R* research project would
have been a more fruitful exercise

78 SIGMOD Record, Vol. 33, No. 4, December 2004

the trouble to understand a lot of these things by not only reading past papers but even going back to the
System R code and understanding many features that otherwise had not been documented. I also talked to
the System R people, some of whom are still in IBM in my research lab, and I even went back to [the
hierarchical DBMS] IMS and looked at its code to discover certain aspects of that IBM product. Having
done all that work, I felt that the rest of the research community as well as the IBM product community
should benefit from all that information that had been gathered up. So I chose to describe a lot of the
algorithms and options available on these three topics: recovery, concurrency, and storage management.

What did you learn from the experience of technology transfer of ARIES, and what is your relationship to
the product groups at IBM today?

In fact, the ARIES algorithm as described in the paper resulted from my interactions with Don Haderle, who
at that time was the chief architect of DB2 on the mainframe. It was through the interactions with him that I
had realized that DB2 had done certain things very differently from the way System R people had done
them, which then got commercialized as SQL/DS. System R used shadow page based recovery, and left as
an open problem how to do record locking with write-ahead logging. As I tried to understand why these
things were done differently, I began to get a better feel for what were the real problems and what the
characteristics of the solution should be, based on Don Haderle's real-life experience with the DB2 product.
So, the ARIES work resulted from the very close cooperation of a product person and a research person.

The ARIES work also led to the creation of the Database Technology Institute as a framework under which
researchers and product people in IBM work together. Technology transfer became easier because we started
working with product people early on, in the system
design and implementation phases of our research
projects. Ever since, I've been very closely associated
with products. I have tried hard to make the work that I
do be technologically challenging from a research
community perspective, with papers coming out of such
work, as well as be applicable to real-life problems and
hence get incorporated into products. I've tried to
balance these two aspects of doing work at IBM. I continue to get involved in product-oriented things, not
only in the database area but also in areas like WebSphere and Lotus Domino/Notes. Given the fundamental
nature of the ARIES work, which applies to any system which manages persistent data, the ARIES
algorithms with variations have been incorporated not only in the IBM relational database products and also
some other companies’ products like Microsoft’s SQL Server. They have also been incorporated in
messaging systems like MQSeries and Lotus Domino, for log-based recovery. So ARIES has gone to quite a
few places and I hope to continue to work on those sorts of aspects of IBM's products as well research.

Distributed commit---what is it, and why don't users like it?

This topic was my first piece of work in IBM when I joined the R* project. I was given the task of doing
two-phase coordination algorithm design and implementation in R*. I took the original classical two-phase
kind of protocol and worked on its variations, the so-called presumed abort and presumed commit. The two-
phase commit protocol is a way of guaranteeing, in a distributed context, that transactions are atomic. When
a transaction does updates to more than one recoverable storage area (database nodes or recoverable files),
all updates with the transaction persist if the transaction commits. If the transaction is rolled back for any
reason---user demanded rollback or the system crashes---then all the updates of the transaction are undone.

The problem with trying to apply this in the real world is that there are many environments where the
owners of the data at the different nodes of the network are not necessarily willing to give up their autonomy
by letting others’ systems determine, possibly after a long delay, whether or not data in their own system

the ARIES work resulted from
the very close cooperation of a
product person and a
research person

SIGMOD Record, Vol. 33, No. 4, December 2004 79

will get committed or rolled back. During that indeterminate period of time, access to data that had been
modified but not yet committed is denied to other transactions.

So what's the solution?

The solution is something that's been worked on for a very long time, although in terms of
commercialization, things haven't progressed so well. The solution is the notion of advanced transaction
models: letting nodes independently commit data changes. If afterwards you need to roll back those
changes, then you use the log to figure out what was changed and then apply the appropriate undo operation.
For undo operations, you define the notion of compensating transactions and use them to logically undo the
changes previously committed by single-site transactions. There has been a huge body of literature on this
topic, but in terms of actual implementations, even in incomplete prototypes, not a whole lot has been
accomplished.

And in products?

In products, even less of course. But in the context of workflow management systems, finally some of the
ideas are beginning to see the light of day. Also, standardization efforts like the web services transactions
(WS-TX) and web services coordination (WS-C) are trying to provide features that people could use to build
these high-level transaction concepts. As these specifications become standard and the companies like IBM,
BEA and Microsoft implement the standards, you will begin to see more widespread adoption of that way of

doing transactions.

Finally.

Yep. Long time in coming.

Queuing systems: what is their place in
distributed applications in the database world?

This is an area where there has been quite a bit of

commercial support for a long time in the form of IMS’s queued transaction processing, Digital’s products,
and various other companies that released transactional messaging and queuing systems. In the early 1990s,
IBM introduced its MQSeries product for doing this kind of asynchronous transaction processing, which is
the alternative to the synchronous RPC-style way of doing inter-application coordination or distributed
activities. Because people didn't want to necessarily adopt two-phase commit protocols as a way of doing
distributed computations, the messaging-based way of doing distributed transactional work has been very
popular in the real world. The research community has pretty much ignored that topic, except for a few
papers.

Now we find that business process integration has become very important as different companies adopt IT in
a big way. Also inter-organizational work is being automated more and more. Especially with the web
coming into the picture and inter-company transactions being executed using the web, the message-based
way of doing distributed computations has become very significant. Some of the DBMS vendors have even
introduced advanced technologies in their products to enable the implementation of database-based
messaging and queuing systems.

So what are the research issues in messaging and queuing systems?

It turns out that the original transactional concurrency kind of features that were introduced in relational
systems are not good enough when it comes to the increased concurrency that needs to be supported by the

the messaging-based way of doing
distributed transactional work has
been very popular in the real world.
The research community has pretty
much ignored that topic

80 SIGMOD Record, Vol. 33, No. 4, December 2004

messaging kinds of APIs. For example, when a user tries to get a message from a queue, even if there are
some older messages which are in an uncommitted state, those messages will get skipped in order to provide
the user with a later committed message that's available. This notion of being able to skip over uncommitted
data in order to more quickly answer the user's request is hard to support, given the current transactional
isolation features in our DBMSs. So that's one research issue.

The other research issue is that messages can have widely varying formats. If you look at the Java messaging
service, it lets users define new headers on a per message basis. Different messaging vendors can add their
own header fields. So the format of these messages can be very different from one message to another
message. When you map these messages to relations, you get into the same kind of problems as when you
try to model XML documents in relational systems. Plus, messages can be very large, so some performance
implications of the kind of logging that we do also need to be addressed.

The third research issue comes from the fact that messages tend to enter the system and leave the system
fairly quickly. Some messages may be persistent, other messages may be non-persistent, and the efficiency
with which all these can be supported in relational systems is not that great right now.

Do these messages typically represent the
equivalent of an RPC call between pieces
of code?

Right.

And why would they need to be
persistent?

RPCs didn't have the transaction notion to begin with. Later on there was the notion of transactional RPCs,
which are done synchronously. If you want the equivalent of transactional RPC functionality with an
asynchronous message-based way of doing business, then you have to guarantee “once and only once”
semantics for message delivery. Once I have sent you a request to do some operation, then come rain or
shine, that message has to be delivered to you. Once you produce an answer or take some action based on
the message I sent you, you will then need to send some response back. We need to make sure all of that
doesn't get lost, in spite of failures and so on. So that's what makes these messages persistent.

There are other situations where the information content of a message does not have to be persistent if that
will improve performance, like the kind of stuff that's become very popular in the research community,
namely streaming kinds of applications. Depending on what is being communicated via these messages,
whether you're doing transactional work or you are just propagating some information like sensor data and
such things, you may or may not care about the persistence aspects of those messages that are being handled.

Mohan, you're one of 56 IBM Fellows. What is it like to be a Fellow? How does it change what you are
doing?

Since IBM has 300,000 employees, of course it feels good to be one of 56 selected people, given that an
IBM Fellow is the highest technical position that one can attain in the company. But at the same time you
also feel more responsibility, because we are supposed to be IBM’s corporate consultants. The company
expects us to not just work on a single project or a narrow topic, but be ambassadors to various parts of the
company and play a leading role in enabling inter-organizational collaboration. We are also supposed to act
as mentors to more junior people in the company who are especially involved in deep technical activities. In
that sense, we can't be spending too much time on any one problem of our own. We need to be also willing

When you map these messages to
relations, you get into the same kind of
problems as when you try to model XML
documents in relational systems

SIGMOD Record, Vol. 33, No. 4, December 2004 81

to travel a lot, given the fact that IBM has operations throughout the world. Even if you restrict yourself to
the research domain, there are research labs scattered throughout the world.

Being an IBM
Fellow is
something that
different people
have dealt with

differently. I've chosen to not only focus on the database area but also get involved in activities relating to
WebSphere and the whole software group of IBM: Lotus products, Tivoli products, and so on. By focusing
on the whole software group architecture of IBM, I'm able to have frequent interactions with IBMers
everywhere. I’ve also gotten involved in activities of IBM Global Services (IGS), which does a lot of
currently popular activities like system integration projects, consulting for customers, and IT operations for
various customers around the world---out-sourcing kinds of work.

What topics should database theoreticians be working on now?

That's a hard one. We were at a panel [at SIGMOD 2003] just yesterday where that topic was discussed. If
you look at what is currently popular in terms of products, XML is an area where a great deal of action is
taking place. In terms of the formal basis for much of that, there is some work from the past that applies but
there are also certain newer aspects of the problem that need to be better formalized. This whole area of
XML and how it's going to be handled in the DBMS context in terms of query processing, and how
concurrency control should be done for XML data when it's stored in its native form (as opposed to
translated to relational records) is one big area that could really use the help of theoreticians in providing a
more solid foundation.

What do you make of the fact that the other research labs that do work on the database area, like AT&T,
Bell Labs, HP Labs, aren't doing so well right now?

I think the problem really is the fact that at least in the case of HP, they used to have a DBMS product but
they were not really selling that product in any serious way. There was scope for some of the HP Labs work
in the database area being commercialized via HP’s product, but in the case of AT&T and Lucent, those
were never seriously computer companies. More importantly, they were not software-product-producing
companies. I've always wondered, when they were having a large number of database researchers, what the
likelihood was that any of that work would see the light of day in terms of being made available to ordinary
users, just because those companies themselves didn't have---

Right, good point. Well, then what about Microsoft? How would you compare?

Microsoft of course is a very different situation. Microsoft to begin with wasn't really doing any serious
work in the database area, even though they were selling a database product, because they were selling the
re-logoed version of Sybase. Once they decided to take that product and make it a Microsoft product, in the
sense of changing its internals and so on, then they saw the need for having a research group. So the
Microsoft research guys have had more successes in doing some technology transfer. But if you compare
IBM Research with Microsoft Research, clearly we have been in the research game for a much longer time.

We've also had the legacy of having been the inventors of the relational model, as far as IBM Research
division is concerned, and consequently we have had a longstanding relationship with our product people in
the database space. In the case of Microsoft, the product existed before the research group was formed, so
they will as a result have a harder time establishing their creditability with their product organization.

This whole area of XML could really use the help of
theoreticians in providing a more solid foundation.

82 SIGMOD Record, Vol. 33, No. 4, December 2004

Mohan, your undergraduate degree is from IIT Madras. Things have changed a lot in India in the past ten
years. If you were graduating from IIT today, would you do anything differently then you did at the time?

When I was studying in IIT in Madras, from 1972 to 1977, there wasn't an undergraduate program in
computer science. Even though I was a chemical engineering student, I had a great deal of interest in
computer science. So if I were there now, of course I'd have the option of doing a degree in computer
science, and I would have been able to learn much more about computer science in a formal sense before I
got to do my PhD. In my days, I had to go to the library on my own in my own spare time, and be on the
mailing lists of various US universities and research labs in order to obtain the knowledge that I was able to
gain.

The students that are studying computer science now in India have many more options with respect to the
way they are able to do their summer internships. During my days, there weren't too many Indian software
companies that had any fancy work being done which would have been very helpful for a bachelor's student
in computer science to gain experience from. There is now great deal of activity in India with respect to
Western software companies having research labs and things like that. IBM also has its research lab in the
campus of IIT in Delhi. So there is much more scope for computer science students to be able to gain
practical experience.

And for database research also?

Yes. In fact, IIT Bombay has probably the largest database group in terms of number of faculty compared to
any other computer science department anywhere.

Wow.

Wisconsin used to have that kind of position in the past. Indian Institute of Science has a group that has
been publishing pretty regularly in the VLDB and SIGMOD kind of conferences. If Indian students were to
choose to go for a Masters or PhD in the database area, there are now places in India where they can do
world class research.

In terms of industrial research labs, in the database area again, IBM is the only one in India. Even there, the
database group is a small one. For that reason, if the person is keen on being in industry and doing database
research, it may take a little longer before a large enough group gets formed over there. But for
academicians, there is a lot of scope.

Among all your past research, do you have a favorite piece of work that is perhaps not so well known?

The first piece of work that I described to you a while ago that I did in IBM was the presumed abort two-
phase commit protocol. While it got widely adopted in industry in the form of various standards, X-Open
XA protocols, and OSI DTP protocols and more recently with OTS and JTS, and it got implemented in
various companies' products, it has not really been thought of as something that was done by our group in
R*. The research community also hasn't recognized it much, but it's a very fundamental piece of work. It
does get taught sometimes in distributed systems courses.

In my days [at IIT Madras], I had to go to the library on my own in my
own spare time [to learn computer science. There] are now places in
India where students can do world class research

SIGMOD Record, Vol. 33, No. 4, December 2004 83

My second favorite piece of work that was in the context of ARIES was the work on index concurrency
control and recovery. While the basic recovery scheme of ARIES is covered a fair bit now in textbooks and
courses, the more complicated aspects of doing index concurrency control and recovery is something that is
still not being taught enough in courses. That work was published in a shorter form in SIGMOD '92 and is
of an extremely fundamental nature. It needs to be studied more and taught more.

My third favorite piece of work is the Commit LSN (Log Sequence Number) concept which is a simple way
of recognizing that all the data on a page is committed. That was a VLDB '90 paper.

In my opinion, these are very cute, very good, and important pieces of work that need to be further adopted
and taken advantage of by the research community.

If you magically had enough extra time to do one additional thing at work that you
are not doing now, what would it be?

Of late, I haven't been publishing as many papers as I used to publish at the peak of
the ARIES family of algorithms work. I would like to be able to sit and write up
more of the things that I've thought about or figured out. I'm just not able to find the
time, or sometimes I'm not sure whether I have the desire to go through the painful
process of writing it up in an understandable fashion and getting it published.

You need a student. You need a student, definitely.

I would like to work with more people and spend time, but then I travel. My
involvement in various activities as an IBM Fellow also in some ways takes away the
possibility of doing that.

If you could change one thing about yourself as a computer science researcher, what
would it be?

That's a hard one to answer. I guess I could be doing more of getting into many details of particular pieces of
software and understanding them in greater detail as I used to do in the past. At the same time I would like
to also be able to explain complicated concepts in a very easily understandable fashion. Describing
algorithms in an abstract form, as some other researchers are capable of doing, is something that I haven't
really mastered, and that's the reason many people find my papers too complicated to read.

Well, thank you very much.

Thank you.

Describing
algorithms
in an
abstract
form is
something
that I
haven't
really
mastered

84 SIGMOD Record, Vol. 33, No. 4, December 2004

