
Daniel Abadi Speaks Out
 by Marianne Winslett and Vanessa Braganholo

Daniel Abadi
http://cs-www.cs.yale.edu/homes/dna/

	

Welcome to this installment of ACM SIGMOD Record’s series of interviews with distinguished
members of the database community. I’m Marianne Winslett, and today we are in Indianapolis,
site of the 2010 SIGMOD and PODS conference. I have here with me Daniel Abadi, who is an
assistant professor at Yale University1. Daniel is the recipient of the 2009 ACM SIGMOD Jim
Grey Dissertation Award, for his dissertation entitled “Query Execution in Column Oriented
Databases”. Daniel’s PhD is from MIT. So, Daniel, welcome!

So, Daniel, what is the thesis of your thesis?

So my thesis was, we looked into query execution inside column store database systems. In
relational database systems, we have a bunch of two dimensional tables, where rows correspond
to entities and relationships, and columns are the attributes. So the majority of database systems
that exist, that existed in the ‘70s and ‘80s, and up until recently, store data row by row. So when
they have to map a two dimensional table to a one dimensional interface of storage, they store
the first row, then the second row, then the third row, and so on, all the rows in this table. So
what column-stores do is instead of storing it row by row, they do it column by column. So they
store the whole first column, and all second column, and so on. The main reason why this is
good is that for analytical queries, these queries tend to read a bunch of tuples in the same query.
Say you want to aggregate or summarize them, then column-stores are much more I/O efficient.
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Daniel	 Abadi	 is	 currently	 an	 Associate	 Professor	 at	 Yale.	 	

28 SIGMOD Record, December 2012 (Vol. 41, No. 4)

The reason is that if you store data row by row, since a block size of storage tends to be larger
than a tuple, you end up retrieving a bunch of data from storage, more than you actually need to
answer the query. Meanwhile, in a column-store, if a query accesses say only three out of a
hundred columns in a table, the column store is able to read just those three columns off disk,
and therefore get a bunch of I/O improvement that way.

There are some disadvantages. The most disadvantages have to do with writes. So if you want to
insert a new tuple into the database, in a row-store you can generally do this with a single write --
- you find where you want it to go, and in a single disk write, set the whole tuple on the disk. But
in a column-store, if you want to insert a new tuple, you have to break it up into its pieces and
write each piece separately. So if you have a hundred attributes, that could be up to a hundred
different disk writes (a hundred different disk seeks to execute them). So it is a basic read/write
trade off, although it is a little more complicated than that, but that is kind of an overview.

It turns out that the demand is increasing for analytical workloads because people want to just
look at the data and analyze it. Once it is already there, they just spend a lot of time trying to get

the most of what the data means.
Workloads are becoming increasingly
read-mostly and that gives column-stores
a big advantage.

What my thesis did within this context is
in two main pieces. The first piece was
looking at compression. So it turns out
the column-stores also provide a big
compression advantage relative to row-
stores. The reason is as follows: row-
stores store tuples row by row, but a row
consists of many attributes. So you have
very unsimilar data near each other.
However, with column-stores, you store
data from the same attribute domain

consecutively in the storage. What happens is that you end up getting lower data entropy, and
therefore a better compression ratio in column-stores. So immediately after that, we get better
compression just from having more similarity in data.

But then there are some additional advantages as well. So one thing that column-stores get you is
since they are designed for read-mostly workloads, they tend to very aggressively sort data by
the attributes. So row-stores make some guarantees about sort, but they won’t generally totally
sort the data and store it densely on storage. Whereas column-stores will do that, so in general,
you might have the same table stored redundantly multiple times in different sort orders. And
sorting also improves compression ratio again because you get more self-similarity in data. Also,
when you sort data in a column-store, you get some compression techniques which are possible
in a column-store but not possible in a row-store. The most obvious example is run-length
encoding. So, with run-length encoding, one data item may appear in several rows consecutively.
Let’s say you have a table, you are a retail company, and every time a product gets sold you just
store the quarter that it was sold, and then the part name, and the customer who bought it. But the
quarter that it was sold in (quarter one, quarter two, quarter three), you might have millions of

The	 great	 thing	 about	 the	
job	 market	 is	 you	 get	 to	

meet	 all	 these	 new	 people,	
and	 you	 get	 to	 sort	 of	 start	
collaborations,	 or	 at	 least	

get	 into	 the	 network	
somehow.	

SIGMOD Record, December 2012 (Vol. 41, No. 4) 29

transactions in that quarter. So if you store your data and order it by quarter, you are going to
have multiple repeats in the quarter attribute. So if you want to encode that you might have a
million quarter ones in a row that could be encoded to just three integers essentially. So that will
obviously get you very good compression. In column-stores it is very easy to do this because in a
column-store you store all the data from the same attribute in a row. In a row-store it is not so
easy to do this because you have multiple tuples from the same quarter in a row, but you also
have these other attributes as well, the product ID, and the customer ID, and the store ID, and so
on that are integrated into the data. So it is much harder to do this kind of run-length encoding in
a row-store.

So that was the first piece. But then it gets even more interesting. By the way, the reason why we
compressed it in the first place is not to save space. Space is nice, but it is generally not a big
cost factor. The reason why we compressed data was for performance. Lots of these workloads
are I/O limited. If you have less data that needs to be read off disk because it is compressed, then
you are able to save time by skipping all that in the query. So that’s great. You do have some
disadvantages which is that you have to decompress the data eventually. So you have some big
I/O advantages, but then before you can actually process the data, in general most systems will
go and decompress the data before running the database operators.

So another big part of what my thesis did was we looked at how to operate directly over
compressed data. So we looked at compression algorithms which are very amenable to do direct
operation, and then we looked at what the architecture of the query executor should look like to
be able to extend a database with multiple compression algorithms and not have to totally rewrite
the query executor to handle direct operations over compressed data. So, that was one major
piece of my thesis.

The other major piece was the tradeoff between early materialization and late materialization of
data. So, in column-stores, the data is stored in columns, column by column, but in general, you
want this to be just a storage-layer optimization. So at the interface of the database system, you
still want people to be able to execute queries using SQL. You want to give users rows back over
the connection with the database. So at some point in the query plan data has to be converted
from columns to rows. One thing we did in this thesis was we looked at when is the right time to
do this conversion, and in general we found that the later the better. There are a variety of
reasons for that. The first was this direct operation over compressed data. If data is compressed
column by column, and you can operate directly on compressed data, then you can keep data in
columns as you go through the query plan. But once you converted columns to rows, since we
compressed each column separately, you end up having to decompress data before stitching the
tuples together in the same row. So you totally lose the direct operation over compressed data
advantage, which is a big negative.

There are other reasons as well. The other main reason is that most queries tend to restrict the
tuples over time, so they are either applying a predicate, or they are aggregating data, so the
number of tuples at the output of the query are much less than the number of tuples at the input
of the query. So especially right at the bottom of the query plan, it’s pointless to spend all this
time stitching all these columns together into rows if you are going to go and drop the tuple on
the floor immediately. In that case, you want to at least wait until after the selection operator,
before constructing these tuples. So this is kind of the same reason why we push selects past
joins inside the row-store database systems. In general, we have found that late materialization

30 SIGMOD Record, December 2012 (Vol. 41, No. 4)

was good. However, especially when it comes to joins, the tradeoff gets a little bit more subtle,
more interesting. For some joins, you do want to still keep data late-materialized, but for some
joins you want to actually materialize before the joins, at least the inner-table in nested loop joins
or hash joins. I think that is the two main pieces of my thesis that I can talk about.

Do you have any advice for young people who are on the job market?

Yes, I think I have a few experiences that might be useful. So, I interviewed, I guess now a few
years ago, on the job market. Actually that was a year, almost a year before I actually graduated,
so, a few things here. First of all, I didn’t interview at any research labs. I think that was a
mistake. So I only interviewed in academic institutions because I thought that is what I wanted,
and that is what I wanted, I don’t mean to say I am not happy in academia, but by not
interviewing in research labs, I didn’t get exposed to, I didn’t get any connections to research
labs. The great thing about the job market is you get to meet all these new people, and you get to
sort of start collaborations, or at least get into the network somehow. So I totally missed out on
that. And also, looking back right now, I
think a lot of the best of systems research
is being done at research labs. The
Googles, the Yahoos, the Facebooks, you
know, they have the best datasets, they
have great access to engineers, so they
kind of see through the systems through
the end. That is one thing in academia, is
you can start with a prototype, and work
with the students to get a sort of bare
bones part of the system in place, but to
finish it off and make it useful is really
hard to do in academia. And I think that
one thing you have in industry is more
access to these developers and to real
data and to real problems which I think,
should not be overlooked in the decision. And looking back on it now I really encourage people
that graduate now to look at, even if you think you want to go into academia, to at least interview
at research labs, and at least get exposed to that part of the world. That’s one thing.

The other thing was that I didn’t take any time off between graduating and starting my job. In
fact, for two months I was trying to finish my thesis and start my new job at the same time. And
that really was fairly unpleasant. So I encourage people to, once you have a job in place, most
places will say “you don’t have to join us immediately”, “you can wait six months”. Some places
will let you wait a year, and then maybe, if you go to academia, then you may spend that year at
a research lab, or start a company, or get some exposure at another part of the world, or take time
off, which is also probably a good idea, because once you start, it gets very crazy. So that is
something to think about as well.

Great advice. If you could change one thing about yourself as a computer science graduate
student, what would it be?

[…]	 analytical	 queries	 tend	
to	 read	 a	 bunch	 of	 tuples	
in	 the	 same	 query.	 Say	 you	

want	 to	 aggregate	 or	
summarize	 them,	 then	
column-‐stores	 are	 much	

more	 I/O	 efficient.	

SIGMOD Record, December 2012 (Vol. 41, No. 4) 31

I think I would do an internship. So, I never did an internship as a graduate student. I went
directly from starting as a student all the way through to the end. I did two weeks at HP labs as a
research in residence program, but that obviously wasn’t very long, so I think doing internships
is a really good way to make some more connections in industry, which I never did.

Great, well, thank you very much for talking with me today!

Thank you very much!

32 SIGMOD Record, December 2012 (Vol. 41, No. 4)

