
Sudipto(Das(Speaks(Out(on(
Scalability(and(Elasticity(of(

Database(Systems!
!

Marianne'Winslett'and'Vanessa'Braganholo'

Sudipto Das
http://research.microsoft.com/en-us/people/sudiptod/

Welcome to ACM SIGMOD Record’s Series of Interviews with distinguished members of the database community.
I’m Marianne Winslett and today we’re in Snowbird, Utah, site of the 2014 SIGMOD and PODS conference. I have
here with me Sudipto Das, who is a researcher at Microsoft and the recipient of the 2013 SIGMOD Jim Gray
Doctoral Dissertation Award, which is for his dissertation entitled “Scalable and Elastic Transactional Data Stores
for Cloud Computing Platforms”. Sudipto’s PhD is from the University of California Santa Barbara where he
worked with Divy Agrawal and Amr El Abbadi.

SIGMOD Record, December 2014 (Vol. 43, No. 4) 33

So Sudipto, welcome!
Thank you very much!

Tell me about your dissertation
So before I get to the actual dissertation work, let me
give you some background of where I started. It was
about 2008-2009 when I got started in this area, early
in my PhD program. There was a lot of buzz about
Cloud Computing, NoSQL, and key-value stores. The
Google BigTable paper had come out, Dynamo from
Amazon had come out, and there was a lot of buzz
about key-value stores and database systems being
dead, RDBMS are bad, and whatnot. So my advisors,
Divy and Amr, suggested to try to analyze why the
key-value stores were so successful and why people
were saying that RDBMS were bad. We then realized
that you can look at it as a spectrum where on one axis
you have consistency guarantees or ACID properties,
and on another axis you have scalability. Key-value
stores were very high on the scalability axis, but very
low in terms of guarantees. RDBMS, on the other
hand, have provided very good guarantees in terms of
transactions, in terms of access methods, and whatnot,
which key-value stores lacked.
The question that we wanted to answer as part of our
work was: is there a way to bridge this gap between the
key-value stores and relational databases? One of the
key insights that we derived by analyzing all these key-
value stores, looking through it, and brainstorming
about it, is that the key fundamental idea was to limit
most of the accesses to a single server or single node,
to avoid a lot of distributed synchronization.
Distributed synchronization was still being used in a
lot of these key-value stores, but they were using it
very judiciously. So with this abstraction and with this
learning, we tried to see what transactional abstractions
could be carried forward while limiting accesses to a
single server. So you get all the good properties of key-
value stores: you can scale out, you get elasticity, you
get high availability, but you can still provide
transactions at certain granularity.
Essentially, the first half of my dissertation looks into
two different ways of designing such systems. One
way is through a statically partitioned database, where
you define a specific schema pattern. It is a
hierarchical schema pattern that is actually explored in
a number of other systems as well. We show that if
you have such a hierarchical schema pattern, and if
your transactions adhere to and only access a given
hierarchy, you can provide efficient transactions while
scaling out similar to key-value stores. The other
abstraction that we were looking at was, what if these

partitions weren’t statically defined? So think of it as if
an application comes in and dynamically specifies that
“here is a bunch of data items on which I want
transactional access for a certain period of time.” Once
such a declaration is provided, the system takes on the
responsibility of the transactional access on this group
of items during a certain span of time, after which the
application says, “I don’t need it anymore,” and the
system is free to do whatever it wants. So we came up
with an abstraction called they Key Group abstraction,
where essentially an application can come and specify
a group of data items. We do some distributed
synchronization to localize accesses to the data items
during the lifetime of what we call the Key Group.
Transactions execute on the Key Group. We take on
the responsibility of doing it efficiently. Once the
application says the group can be deleted, we take on
the responsibility of propagating the updates back to
the original servers that hosted the key-value pairs,
from which the application has formed the group, and
life moves on beyond that. So it’s a way of
dynamically defining your partitions on which you
want transactions.
After doing the transactions part, one part that was still
left was elasticity. In the key-value stores, one of the
key selling points is elasticity and so is that of cloud.
So the next question that we started to answer was that,
can we make (classical) databases elastic as well, while
executing transactions? One of the key mechanisms
that was missing was this concept of live (database)
migration. Elasticity essentially means that when the
load goes up, you add a new server, your data spreads
out to the new server, and your new capacity gets used.
And this is all happening while the system is running,
causing minimal disruption to the transactions that are
executing.
One of the key mechanisms that enable this is what we
call a live database migration. A database is on server
A. At some point in time, a (system) controller decides
that it is time to move this database off to do elastic
scaling, and it initiates this live migration while
transactions are executing with as little disruption as
possible. On the fly, this database gets moved from

 “The(PhD(is(your(entire(life(
compressed(in(5(years.(
You’ll(see(ups(and(downs(
throughout(your(life.(You’ll(

see(ups(and(downs(
throughout(your(PhD”.((

Divy(Agrawal

34 SIGMOD Record, December 2014 (Vol. 43, No. 4)

server A to server B. The new transactions get routed to
server B and from the user’s perspective it’s minimal
disruption. And this can happen the other way around -
- when the load goes down, the servers shrink, you
have consolidation. That is, it helps both ways. So
essentially what we developed was two different
mechanisms for providing live migration in two
different database architectures. One was a shared-
storage architecture, where the persistent data is stored
in a decoupled replicated storage system, like HDFS in
our case. In another case we were doing replication for
shared-nothing, where the persistent data was stored in
a locally attached disk on the server itself. So during
the course of migration, in the first part, we were just
migrating the hot cache, so the read and write
transactions would see minimal impact at the
destination, whereas in the second case, we were
actually migrating the persistent data as well, along
with the state of some of the transactions. So the first
part [of the thesis] talks primarily about scalability and
the second part talks primarily about elasticity. And it
is the transactions and cloud platforms that ties them
together.

Have you seen industrial interest in that?
That’s a great question. There is definitely industrial
interest in this area. When we were developing these
ideas, a number of key industrial developments
happened concurrently that kind of resonate on similar
ideas. If you look at Microsoft Azure (SQL) database,
which used to be called SQL Azure back then, they
had a similar notion of a hierarchical schema, limiting
transactions to a single node, and then being able to
scale out to a cluster. Google’s Megastore has taken a
similar direction, where there was, again, a hierarchical
schema statically defined, and then transactions were
operating on that hierarchical schema. So all of this
happened concurrently while I was working on my
dissertation with my advisors and my colleagues. So I
wouldn’t say it was an impact to this line of work, but
at least it was gratifying to see that indeed these ideas
really work out in practice, and things which have
similar insights are actually being deployed in
production.
In terms of academic impact, there has been a lot of
follow-up work. Especially in migration and in
transactional key-value stores, people have followed
up on our work. There are a number of citations that
we have received for our papers. As far as I know, I’m
not aware of any system that directly implements my
ideas, or the ideas that were developed in the
dissertation, but we never know what’s under the hood
for a lot of these commercial systems.

So true. Is there anything that you know now what you
wish you would have known during your PhD studies
and job search?
That’s a very tricky question. Let me try to rephrase it
a little bit. What I would try to answer is what I’ve
learned during the course of my PhD that actually
helps me out, even today. So, there was one thing my
advisor, Divy, told after my first paper got rejected. I
was obviously very depressed. As a fresh graduate
student, I had very high hopes that if I did good work,
who would stop it from being published? So Divy gave
me a punch line saying that “The PhD is your entire
life compressed in 5 years. You’ll see ups and downs
throughout your life. You’ll see ups and downs
throughout your PhD”. Failures are a part of it. You
have to deal with failures. I think, one of the key things
I learned during my PhD was to deal with failures. In
research, in different parts for getting my research
accepted in the broader community, etc. I see that this
is very true in other aspects of life as well. This is
something that has really helped me get through many
situations, helped me understand different scenarios,
and overall improve me professionally. That is more
from the philosophical point.
From the technical perspective, what I learned during
the different projects that I was working on and also
during my internship, which I did with Phil Bernstein
at Microsoft Research, was the value of having good
experimentation for systems research. I even have
done this on some my papers as well, and I try not to
repeat that. Sometimes we have an idea for a system.
We try to do experiments that validate only our idea.
As soon as we have that validation, we often write the
paper. It is good in some sense to have a validation of
the idea, but it doesn’t provide others with the insights
that they need to maybe apply the idea in a different
context. Or maybe learn from what worked or didn’t
work. So essentially what I try to do now or what I
tried to do in some of my later papers in my PhD is to
have a more thorough experimental study that analyzes
the different tradeoffs of the system. This helps me, as
well as others who read the paper, to understand the
key insights in addition to what is actually being
publicized in the paper. So it helps me understand the
system better. It helps me sometimes to optimize the
system even more. I hope it helps the readers of the
papers to get a better understanding as well. So this is
something that I’m sure I’m not there yet. I probably
need a lot more practice, a lot more nurturing, a lot
more work.
I think a very critical part of doing systems research is
to have a good understanding of the dynamics of the
system. There are probably hundreds of different ideas
that are being proposed in many different papers. But
then if we step back and try to make sense of what can

SIGMOD Record, December 2014 (Vol. 43, No. 4) 35

be abstracted out and applied to other contexts, it
becomes really hard. That’s why I think the VLDB
experimental track papers help us a bit in that
direction, but I guess the initial papers can also do a
better job in that.

Great! Thank you very much for talking to me today.
Thank you! It was a great pleasure. Thank you for
having me here.

36 SIGMOD Record, December 2014 (Vol. 43, No. 4)

