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Welcome to ACM SIGMOD Record’s Series of Interviews with distinguished members of the database community. 
I’m Marianne Winslett and today we’re in Snowbird, Utah, site of the 2014 SIGMOD and PODS conference. I have 
here with me Sudipto Das, who is a researcher at Microsoft and the recipient of the 2013 SIGMOD Jim Gray 
Doctoral Dissertation Award, which is for his dissertation entitled “Scalable and Elastic Transactional Data Stores 
for Cloud Computing Platforms”. Sudipto’s PhD is from the University of California Santa Barbara where he 
worked with Divy Agrawal and Amr El Abbadi. 
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So Sudipto, welcome! 
Thank you very much! 
 
Tell me about your dissertation 
So before I get to the actual dissertation work, let me 
give you some background of where I started. It was 
about 2008-2009 when I got started in this area, early 
in my PhD program. There was a lot of buzz about 
Cloud Computing, NoSQL, and key-value stores. The 
Google BigTable paper had come out, Dynamo from 
Amazon had come out, and there was a lot of buzz 
about key-value stores and database systems being 
dead, RDBMS are bad, and whatnot. So my advisors, 
Divy and Amr, suggested to try to analyze why the 
key-value stores were so successful and why people 
were saying that RDBMS were bad. We then realized 
that you can look at it as a spectrum where on one axis 
you have consistency guarantees or ACID properties, 
and on another axis you have scalability. Key-value 
stores were very high on the scalability axis, but very 
low in terms of guarantees. RDBMS, on the other 
hand, have provided very good guarantees in terms of 
transactions, in terms of access methods, and whatnot, 
which key-value stores lacked.  
The question that we wanted to answer as part of our 
work was: is there a way to bridge this gap between the 
key-value stores and relational databases? One of the 
key insights that we derived by analyzing all these key-
value stores, looking through it, and brainstorming 
about it, is that the key fundamental idea was to limit 
most of the accesses to a single server or single node, 
to avoid a lot of distributed synchronization. 
Distributed synchronization was still being used in a 
lot of these key-value stores, but they were using it 
very judiciously. So with this abstraction and with this 
learning, we tried to see what transactional abstractions 
could be carried forward while limiting accesses to a 
single server. So you get all the good properties of key-
value stores: you can scale out, you get elasticity, you 
get high availability, but you can still provide 
transactions at certain granularity.  
Essentially, the first half of my dissertation looks into 
two different ways of designing such systems. One 
way is through a statically partitioned database, where 
you define a specific schema pattern. It is a 
hierarchical schema pattern that is actually explored in 
a number of other systems as well. We show that if 
you have such a hierarchical schema pattern, and if 
your transactions adhere to and only access a given 
hierarchy, you can provide efficient transactions while 
scaling out similar to key-value stores. The other 
abstraction that we were looking at was, what if these 

partitions weren’t statically defined? So think of it as if 
an application comes in and dynamically specifies that 
“here is a bunch of data items on which I want 
transactional access for a certain period of time.” Once 
such a declaration is provided, the system takes on the 
responsibility of the transactional access on this group 
of items during a certain span of time, after which the 
application says, “I don’t need it anymore,” and the 
system is free to do whatever it wants. So we came up 
with an abstraction called they Key Group abstraction, 
where essentially an application can come and specify 
a group of data items. We do some distributed 
synchronization to localize accesses to the data items 
during the lifetime of what we call the Key Group. 
Transactions execute on the Key Group. We take on 
the responsibility of doing it efficiently. Once the 
application says the group can be deleted, we take on 
the responsibility of propagating the updates back to 
the original servers that hosted the key-value pairs, 
from which the application has formed the group, and 
life moves on beyond that. So it’s a way of 
dynamically defining your partitions on which you 
want transactions.  
After doing the transactions part, one part that was still 
left was elasticity. In the key-value stores, one of the 
key selling points is elasticity and so is that of cloud. 
So the next question that we started to answer was that, 
can we make (classical) databases elastic as well, while 
executing transactions? One of the key mechanisms 
that was missing was this concept of live (database) 
migration. Elasticity essentially means that when the 
load goes up, you add a new server, your data spreads 
out to the new server, and your new capacity gets used. 
And this is all happening while the system is running, 
causing minimal disruption to the transactions that are 
executing.  
One of the key mechanisms that enable this is what we 
call a live database migration. A database is on server 
A. At some point in time, a (system) controller decides 
that it is time to move this database off to do elastic 
scaling, and it initiates this live migration while 
transactions are executing with as little disruption as 
possible. On the fly, this database gets moved from 
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server A to server B. The new transactions get routed to 
server B and from the user’s perspective it’s minimal 
disruption. And this can happen the other way around -
- when the load goes down, the servers shrink, you 
have consolidation. That is, it helps both ways. So 
essentially what we developed was two different 
mechanisms for providing live migration in two 
different database architectures. One was a shared-
storage architecture, where the persistent data is stored 
in a decoupled replicated storage system, like HDFS in 
our case. In another case we were doing replication for 
shared-nothing, where the persistent data was stored in 
a locally attached disk on the server itself. So during 
the course of migration, in the first part, we were just 
migrating the hot cache, so the read and write 
transactions would see minimal impact at the 
destination, whereas in the second case, we were 
actually migrating the persistent data as well, along 
with the state of some of the transactions. So the first 
part [of the thesis] talks primarily about scalability and 
the second part talks primarily about elasticity. And it 
is the transactions and cloud platforms that ties them 
together. 
 
Have you seen industrial interest in that? 
That’s a great question. There is definitely industrial 
interest in this area. When we were developing these 
ideas, a number of key industrial developments 
happened concurrently that kind of resonate on similar 
ideas. If you look at Microsoft Azure (SQL) database, 
which used to be called SQL Azure back then, they 
had a similar notion of a hierarchical schema, limiting 
transactions to a single node, and then being able to 
scale out to a cluster. Google’s Megastore has taken a 
similar direction, where there was, again, a hierarchical 
schema statically defined, and then transactions were 
operating on that hierarchical schema. So all of this 
happened concurrently while I was working on my 
dissertation with my advisors and my colleagues. So I 
wouldn’t say it was an impact to this line of work, but 
at least it was gratifying to see that indeed these ideas 
really work out in practice, and things which have 
similar insights are actually being deployed in 
production.  
In terms of academic impact, there has been a lot of 
follow-up work. Especially in migration and in 
transactional key-value stores, people have followed 
up on our work. There are a number of citations that 
we have received for our papers. As far as I know, I’m 
not aware of any system that directly implements my 
ideas, or the ideas that were developed in the 
dissertation, but we never know what’s under the hood 
for a lot of these commercial systems.  

So true. Is there anything that you know now what you 
wish you would have known during your PhD studies 
and job search? 
That’s a very tricky question. Let me try to rephrase it 
a little bit. What I would try to answer is what I’ve 
learned during the course of my PhD that actually 
helps me out, even today. So, there was one thing my 
advisor, Divy, told after my first paper got rejected. I 
was obviously very depressed. As a fresh graduate 
student, I had very high hopes that if I did good work, 
who would stop it from being published? So Divy gave 
me a punch line saying that “The PhD is your entire 
life compressed in 5 years. You’ll see ups and downs 
throughout your life. You’ll see ups and downs 
throughout your PhD”. Failures are a part of it. You 
have to deal with failures. I think, one of the key things 
I learned during my PhD was to deal with failures. In 
research, in different parts for getting my research 
accepted in the broader community, etc. I see that this 
is very true in other aspects of life as well. This is 
something that has really helped me get through many 
situations, helped me understand different scenarios, 
and overall improve me professionally. That is more 
from the philosophical point.  
From the technical perspective, what I learned during 
the different projects that I was working on and also 
during my internship, which I did with Phil Bernstein 
at Microsoft Research, was the value of having good 
experimentation for systems research. I even have 
done this on some my papers as well, and I try not to 
repeat that. Sometimes we have an idea for a system. 
We try to do experiments that validate only our idea. 
As soon as we have that validation, we often write the 
paper. It is good in some sense to have a validation of 
the idea, but it doesn’t provide others with the insights 
that they need to maybe apply the idea in a different 
context. Or maybe learn from what worked or didn’t 
work. So essentially what I try to do now or what I 
tried to do in some of my later papers in my PhD is to 
have a more thorough experimental study that analyzes 
the different tradeoffs of the system. This helps me, as 
well as others who read the paper, to understand the 
key insights in addition to what is actually being 
publicized in the paper. So it helps me understand the 
system better. It helps me sometimes to optimize the 
system even more. I hope it helps the readers of the 
papers to get a better understanding as well. So this is 
something that I’m sure I’m not there yet. I probably 
need a lot more practice, a lot more nurturing, a lot 
more work.  
I think a very critical part of doing systems research is 
to have a good understanding of the dynamics of the 
system. There are probably hundreds of different ideas 
that are being proposed in many different papers. But 
then if we step back and try to make sense of what can 
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be abstracted out and applied to other contexts, it 
becomes really hard. That’s why I think the VLDB 
experimental track papers help us a bit in that 
direction, but I guess the initial papers can also do a 
better job in that. 
 

Great! Thank you very much for talking to me today. 
Thank you! It was a great pleasure. Thank you for 
having me here.  
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