
Andy%Pavlo%Speaks%Out%on%Main%%
Memory%Database%Systems!

!
Marianne'Winslett'and'Vanessa'Braganholo'

Andy Pavlo
http://www.cs.cmu.edu/~pavlo/

Welcome to ACM SIGMOD Record Series of Interviews with distinguished members of the database community. I’m
Marianne Winslett and today we’re in Snowbird, Utah, USA, cite of the 2014 SIGMOD and PODS conference. I
have here with me Andy Pavlo, who is a professor at Carnegie Mellon University. Andy received the 2014 SIGMOD
Jim Gray Doctoral Dissertation Award for his thesis entitled “On Scalable Transaction Execution in Partitioned
Main Memory Database Systems”. Andy’s PhD is from Brown University where he worked with Stan Zdonik.

SIGMOD Record, March 2015 (Vol. 44, No. 1) 41

So Andy, what do you got there? Can you rotate it so
that we can read it in the camera?
This is my Jim Gray Doctoral Dissertation Award.

Woah! Look at that! Now, is this body armor?
No, no, this is my belt. I’ve only won two awards in
my life, okay? I won class clown in high school and
then I won this. And you know what? I may never win
another award ever again, so I’m going to relish this as
much as possible. So I don’t want to take away from
Aditya because he won as well, but he’s won best
paper award and things like that. So this is it for me.
So I’m going to sleep with this every night for the next
year and then someone else will win for 2015.

So you just strap it around your waist?
Well, maybe, but when you give a talk you have to
hold it like this because people can’t see above the
podium, right? And then I’ll have my students hold it
up behind me and walk in with it in a procession
whenever I give a talk. Just for one year, and then after
that, it will be retired. It will go in a shelf in my office
at Carnegie Mellon.

Okay! And which parts of it did SIGMOD give you?
Well SIGMOD gave me the plaque. The belt part, you
know, I made myself.

You made it yourself?
Well, I got it lasered.

Okay. Well it looks pretty spiffy. Maybe we should do
that for every award winner.
Again, so Aditya… he worked hard, he got the award
too. He had the option to get a belt. He could have
made a gold chain to hold his. He decided not to. I
decided to do it. So there you go.

Now by saying that you got the award for class clown,
you’re setting the bar very high for this interview.

I don’t know about that much, but okay.

Okay, well let me ask you first. What’s your
dissertation about?
We started around 2007, 2008 when the NoSQL
movement was gaining prominence. They were all out
there saying, “Well, the only way that you can scale up
a large scale distributed database system to support a
large number of concurrent users with concurrent
operations is if you give up transactions entirely”,
right? So you see these in systems like Google’s
BigTable or Amazon’s DynamoDB, and in the open
source world there’s Cassandra, MongoDB and Riak,
sort of implementations based on those ideas. So when
we started we said, “Well, let’s not give up
transactions. Let’s see what we can do in a modern
architecture. Can we still have a distributed database
system that can still support strong ACID guarantees?”
So that’s sort of what culminated in the system called
H-Store that I helped develop with people at Brown, at
MIT and Yale and then what eventually became
VoltDB, but it was originally out of Vertica.
The basic concept of the system was that we were
going to have a main memory execution environment.
We were going to have serial execution transactions
across multiple nodes. We would support stored
procedures only, we would use a real lightweight
logging scheme. So that allowed us to be able to
support the large number of concurrent users that you
need in these modern Internet applications without
having to give up transactions. So I think that was a
pretty significant contribution.

And did you achieve that totally?
To some extent, yes. I mean, there are certain aspects
of applications where H-Store is not the right
architecture. I’m totally upfront about that, right? But I
think we’ve seen this in the commercial space with
VoltDB. VoltDB is the commercial implementation of
H-Store’s architecture. There are a large number of
applications where the design we used in H-Store is
absolutely appropriate and it works really well. But
there are a large number of applications, for instance,
anything with a social graph like Facebook or Twitter
where you have arbitrary users connected together, that
don’t partition very well, so H-Store is not the right
architecture for that.

So what were the key architectural or implementation
choices that you made that make it a success?

Your%job%talk%needs%to%have%
tons%of%graphs.%Lots%of%
jokes,%lots%of%graphs.%

Michael%Stonebraker%

42 SIGMOD Record, March 2015 (Vol. 44, No. 1)

The main one was that it’s main memory storage
engine. That’s not a new idea. The first work around
this concept was in early 1980s. What makes it
different this time around is that we’re finally at the
point where the price and the capacity of DRAM made
it possible to store all but the largest OLTP databases
(these front end transaction processing databases)
entirely in main memory. Once you have everything in
main memory, a lot of the design decisions that came
out of the original databases from the 1970s don’t
make sense anymore – the stuff from Ingres and
System R. So for example, you don’t need a heavy
weight concurrency control scheme with locks and
latches in order to mask the latency of disk because
there is no disk. So in a traditional system, a
transaction could stall anytime because you had to
touch data that wasn’t in main memory, that was in
disk, and therefore you had to allow other transactions
to run at the same time in order to mask that stall. But
now since everything is in main memory, you’re never
going to have a disk stall, so it doesn’t make sense to
allow multiple transactions to run at the same time.
Another key concept that we did in H-Store was that
we use a lightweight concurrency control scheme
based on partition level locks where each partition is
going to get assigned a single threaded execution
engine for transactions. And so, because it is single
threaded, when it executes a transaction it knows that
no other transaction and no other thread is running at
the same time to touch that same data and therefore
you don’t need any locks and latches at the lower stuff,
more at the fine grained level. So that allows you to
run really fast.

What about cache misses?
There are no cache misses. I mean are you talking
about L1, L2? Those are so fast. Having to go to
DRAM it’s significantly faster than having to go to
disk, so those aren’t really a big issue for us.

And what part of that giant system did your thesis
focus on?
The thesis itself wasn’t just, “Hey, we built this
system, ta da”, right? The fundamental part was “Hey,
there is this new architecture, we can do better than a
traditional system”. Then going beyond that was,
“What are all the problems where this doesn’t work
out?”. So the rest of the thesis is saying and
identifying, “Well here is the issues we have when
working in this kind of operating environment and
what we can do to fix it”.
Three main parts came after the basic system design.
The first one was coming up with automatic techniques

to take an arbitrary application and figure out the best
partitioning scheme and how to split it up across a
cluster of nodes so that you maximize the percentage
of the transactions that only touch data at a single
partition at a single node. Then you avoid any of the
slowness involved with two-phase commit like Paxos.

The second part is related to multi-partition
transactions. It happens that for some applications you
are not able to get rid of these distributed transactions,
these multi-partition transactions entirely. This could
be either because the application simply does not
partition in a good way (the Twitter/Facebook example
is a good one), but also might be because of weird
legal reasons. So to give an example, we’ve visited
PayPal in their early days and they had this weird legal
restriction where customer accounts from different
countries could not be on the same physical hardware
for some reason. So that means if you were using a
system like H-Store, this would never work because
that’s always going to be a multi-partition transaction.
And so the second piece of the thesis resided in using
machine leaning techniques to figure out, when a
transaction request comes in, if it’s a single partition, a
distributed transaction and what partitions it actually
needs to touch so that we only need to allocate or lock
the bare minimum of resources we need for that
transaction. Then while it’s running, we can identify
when it’s done with those resources, go ahead and
release them and let the next transactions to start
running. This is sort of doing an early two-phase
commit process. So that was the second piece.
We’ve tried to minimize the number of distributed
transactions, we have identified when the transactions
come in and whether they’re distributed or not, but we
still have these distributed transactions. We have these
points where the execution nodes in the cluster are idle
because they’re locked by some other guy in another
node and therefore they’re waiting for the next request
to work on, and they’re sitting and doing nothing. This
is because we’re using this serial partition level
locking scheme. So the third piece of the thesis is a
speculative execution technique where we identify
when we’re idle at a remote node because of a
distributed transaction. We go ahead and peek in our
queue for that partition and try to pick out transactions
that commute with what work the distributed

The%one%thing%that%I%think%I%
realized%in%grad%school%that%
made%me%successful%is%
really%focusing%on%this%

single%project.%

SIGMOD Record, March 2015 (Vol. 44, No. 1) 43

transactions have done so far. We show that by using
these machine learning techniques that we use for the
second part, we can identify transactions that will
finish in enough time and won’t interfere at all with the
distributed transactions. So everybody can do a root
commit in the end and we’d all claim we don’t violate
any isolation consistency guarantees.

Do you know anything now that you wish you had
known when you were a grad student? Or during your
job-hunt?
Well, that’s two questions… For grad school, there
was this really critical point in my second and a half
year where I needed to decide whether I wanted to go
and continue building H-Store (the academic version
of the system) or whether I should just leverage what
the VoltDB guys were doing in the commercial side.
The H-Store relationship with VoltDB is kind of
incestuous where we were separate projects that came
together as one project then we separated again then
we came back together. I thought I was going to go
forward using everything of VoltDB, but my advisor to
his credit, he said, “look I really think that you’d be
better off from a research standpoint, if you did
another fork, pulled back some changes from VoltDB
in the H-Store code but then rewrote a lot of the stuff
that you need for research”. This was a hard choice,
right? Because this means that for two years or so I’d
be writing a lot of code and not getting publications
done, but he really pushed me to do this. In hindsight it
was the right thing to do. To his credit, he really stood
by me for those two years when I was not getting any
publications done because I was spending all this time
writing the system. He just let me go and do my thing
and thankfully, it all worked out. So I’m very grateful
for his faith in me in pulling this off.
The one thing that I think I realized in grad school that
made me successful is really focusing on this single
project. A lot of times I see grad students that are
focusing on different things, different projects, and
when it comes the time to go on the job market,
whether it’s an academic or industrial position, they
have this tenuous or weak connection of trying to say,
“I did this project and this project that are all together
in the same package”, right? I think it’s kind of
transparent. Whereas in my case, I was able to go on
the market and say, “Hey look, I built the H-Store
system. I’m the H-Store guy. Here is all the work
based on a single system”. I can talk to length about
any part about the system because I spent so much
time working on it. I credit this idea from Dan Abadi,
who’s now at Yale, but he was at MIT working on the
C-Store project, which was the predecessor to H-Store.
So when he was in the job market, whether he knows

this or not, he was the C-Store guy and he was really
successful in that regard. So I try to emulate that or
copy that idea of being the H-Store guy when I was in
grad student and I think I was pretty successful with it.
As far as what I wish I knew now about being in the
job market… Stonebreaker told me when I got invites
to go interview at some schools, at IBM Research,
Intel Labs, really awesome research places. He
basically said, “Look, you are the only database
systems person on the market. Your job talk needs to
have tons of graphs. Lots of jokes, lots of graphs”. So
my job talk was essentially about my gambling
addiction at the greyhound dog track. So I went this
whole thing about how I go gambling, go see the dog
track, and from that, on how it gave me ideas on how
to make my database run faster. Actually I don’t go to
the dog track, and greyhound racing is deplorable. It
was a joke, right? And only at one place, one guy
thought the joke was real. Everyone knew, that guy is
just joking that’s fine. There was one guy at IBM who
came up to me afterwards, “Hey man, I really like
going to the dog track. When do you want to go?” I
was like, “no, you totally misread that”. I didn’t start
grad school thinking like, “oh, I absolutely need to go
to Carnegie Mellon or a top school like that”. I didn’t
set out to do this. I was just around some really smart
people who had a lot of good guidance and I think I
worked pretty hard to build this thing and everything
worked out.

You described it as a big project and you’re the only
systems guy, does that mean you had like a dozen
bosses?
No, so the project started off being myself, another
PhD student’s at Brown, and two PhD students’ at
MIT. It was a lot of people at the very beginning. This
is like 2007, 2008. We all worked for about a year
building the core basic system out. Then around 2008,
they went out and forked the code and made VoltDB

I’ve%only%won%two%awards%
in%my%life,%okay?%I%won%class%
clown%in%high%school%and%
then%I%won%this.%And%you%
know%what?%I%may%never%
win%another%award%ever%
again,%so%I’m%going%to%
relish%this%as%much%as%

possible.%

44 SIGMOD Record, March 2015 (Vol. 44, No. 1)

(the company). Then all the other PhD students went
off and did other things. I, myself, went off and did
some stuff with the MapReduce with Stonebreaker,
David Dewitt and Sam Madden. All the while thinking
that VoltDB was going to add the stuff that I needed.
They kept saying, “oh, next quarter, next quarter we’ll
do it don’t worry”. Then finally when I went back after
doing the MapReduce stuff to go work on H-Store
again, I asked, “Hey I need x, y and z, are you guys
going to do it?” and they said, “No, this is not what
customers are asking for. We’re not going to do it”.
I’m not faulting them, that is a business decision and
that’s fine. That was the point where Stan was like,
“look you should go and fork your code and do your
own thing”. That’s when I did that. When I went back
to the system, everyone else was gone. I worked with
Evan Jones a little bit but he was sort of off doing the
relational cloud stuff up at MIT. So about a year or so,
I was trying to cobble together whatever resources I

could get, masters students, undergrads, all at Brown to
try to help me build this thing…but it was a lot of time,
a lot of late nights. I did eventually borrow some code
from VoltDB but a lot of the core transactional stuff
was rewritten (twice actually) from scratch. I don’t
recommend it. It probably was not a healthy lifestyle
and it was certainly not sustainable. I’m not keeping
that same pace at Carnegie Mellon because I have
other things to work on. But yeah, it was a lot of code
in over a two or three year period to make this all
work. It wasn’t just me, but for that one period I got to
get whatever resources I could to make this work.

Thank you very much for talking with me today.
Thanks for having me. It’s a blast. Thanks.

SIGMOD Record, March 2015 (Vol. 44, No. 1) 45

