
Rick%Cattell%Speaks%Out%on%
Patenting,%Reinventing%and%
Standardizing%Things!

!
Marianne'Winslett'and'Vanessa'Braganholo'

Rick Cattell
http://www.cattell.net/

Welcome to ACM SIGMOD Record’s series of interviews with distinguished members of the database community.
I’m Marianne Winslett, and today we are in Tiburon, California, at the home of Rick Cattell, who is an independent
consultant. Rick spent over 20 years at Sun Microsystems, where he was involved with many things that we take for
granted today, such as ODBC, JDBC, and J2EE. Rick was one of Sun’s first Distinguished Engineers, and his
dissertation on compiler technology won the ACM Dissertation Award. So, Rick, welcome!

SIGMOD Record, September 2015 (Vol. 44, No. 3) 49

Thank you Marianne, it’s good to be here.

What is a patent troll?
So I’ve been working a lot with companies that are
dealing with patent trolls. A patent troll is a company
who basically does no useful work, but they have
patents and go after big companies with those patents.
They either bought the patents or acquired them in
some fashion and they threaten lawsuits. In almost all
the cases I’ve been involved in, Fortune 500
companies will generally settle out of court because
they do not want to spend a couple million dollars
proving that the patent is not valid. In all of the cases
I’ve been involved in, the patents are definitely not
valid (in my opinion). The US patent office, since
they’ve started granting patents on software in about
1990, seems to not understand software very well, so
people get patents for the silliest things!

Like what?
Like putting a cursor in a field on the screen. Also,
multiple people get patents on the same thing! Right
now, there are about 15 different patents on object-
relational mapping from an object-oriented
programming language to a database system. They use
different and confusing words, so apparently the patent
examiner thought they were different things. And as
far as I can tell, none of these people actually invented
object-relational mapping, which was invented as early
as 1990 or 1989 in academia and in products,
independently. It’s tedious helping with this patent
work, but it’s also satisfying in a sense that I feel like

these patent trolls are standing in the way of progress
in computer science and in the way of people building
real useful products -- they’re just trying to make a
buck. So I’ve been doing a lot of that work lately.

Okay so it sounds like a vampire sucking our creative
blood, but who is the original filer of the patents? Are
these big companies themselves? Or random evil
individuals? Or startups that fail? Or what?
They are typically startups that fail. Startups almost
always file patents on the things that they are doing.
When they fail, their patents go on the auction block,
or get acquired by another company in some fashion.
Then they turn into live ammunition that’s out there in
a dangerous spot.

So do you think those individual startups thought they
had come up with a new idea when filing these object-
relational patents? Or just hadn’t read the literature?
Or what?
That’s a good question, I often wonder about that. I’ve
certainly talked to some people who think that they
invented object-relational mapping and then I had to
show them the previous work. It’s a natural thing when
you have a new idea. There are new ideas whose time
has come and everybody sort of thinks of them at the
same time. So here there was object-oriented
programming, and there were relational database
systems, and people wanted to connect them. Well,
let’s do object-relational mapping! So I would expect
that a number of people think that they actually
invented it, even though they didn’t invent it first.

You actually told me earlier that “the system works in
favor of invalid patents”.
Yes.

That’s awful!
Yes, here is the problem. I think this is probably not
such a bad problem in other areas where the patent
office has a hundred years worth of prior art and they
understand it and it’s well established what’s new and
what’s not, but in software, things are very confused.
So a patent troll with a patent threatens a lawsuit with a
Fortune 1000 company or whatever. The company
looks at the patent and on the surface it seems like they
violate this patent. Proving that the patent is invalid is
very difficult. Typically, a patent holder will bring a
lawsuit in the Eastern District of Texas that is
generally viewed as favorable to patent holders. The

Wonderfulness%is%equal%to%
the%cosine%of%2π%times%the%
release%number%[of%a%

product].%
%

50 SIGMOD Record, September 2015 (Vol. 44, No. 3)

problem, being faced by a big company, is they have to
explain to a jury of laymen why some piece of prior
art, which is a fairly complicated piece of software,
invalidates this patent with a fairly complicated set of
claims. That is difficult to do. They often view it as a
roll of the dice -- they don’t know what is going to
happen when the jury makes a decision. It’s a risk for
them. So rather than spending 2 million dollars and go
to court and fighting, they all settle. They all give
$50,000 or $100,000 to the patent troll or whatever.
Then the patent troll can go on to another big company
with their patents.

Surely, there must be a better way to do things.
Yes, I’ve put a lot of thought into that. I often thought
that the jury of peers should actually be people
knowledgeable in computer science or whatever the
patent is about, but that’s not the system we have had
for a couple hundred years. It would be easy to explain
invalidity to someone with a bachelor’s degree in
computer science.

Well how do they do it in other science and
engineering? So, what’s the secret there?
It’s the same problem, but for some reason software is
more complicated. Even with a new drug, it’s pretty
clear whether it is or isn’t the new drug. In
automobiles… where people can generally understand
how the parts fit together, you can explain it to them.
In software, it’s complicated to explain it to a layman.

So do you think we should get rid of software patents?
That’s a good question. I think they serve a good
purpose between companies that really have invented
something and want to protect that intellectual
property. I think the threshold for the obviousness of
patents and the innovation in the patent has to be
higher than it is right now in software, and then they
would work better.

How would that happen?
That’s a good question. I often ask attorneys about
changing the system. There was an attempt in 2006 to
improve the patent system, but it’s still broken in my
mind. It’s a system we’ve had for hundreds of years…
200 years? So it’s hard to change, especially because
when congress considers a change, there is certainly a
lot of invested interest in existing patents so there will
be a lot of lobbyists in there. I don’t have a good
solution or I would have written a paper about it by
now.

Back when people first started talking about object
databases there were a lot of arguments about “my
data model is better than yours”. That’s a really hard
kind of argument to make. It is kind of religious in
nature. Was that the right argument for them to be
making?
I don’t think so. I think the right argument is to say
“people like object-oriented programming languages
and they need to make their data persistent”. These
systems solved that problem. And then later with
object-relational mapping, they actually solved that in
a different way, storing the data in a relational database
system. That is the strong argument for object
oriented-databases and object relational mapping,
respectively.

So you helped change that argument.
Yes.

What did you do?
Well, when object-oriented databases first came out, I
was concerned that there was no standard like SQL for
relational database systems so they would fail just
because people didn’t want to count on something that
had a different API in every other company. So we
made some progress on that. And then later at Sun, I
was involved in standards in various ways. We can talk
about that later if you want.

You can mention them. We might come back to them.
So I learned something from the ODMG object
database standard experience that I applied to JDBC
when I was at Sun trying to get a dozen different
companies to agree on a standard.

Yeah?
Standards typically turn into a design by committee
that is very confusing and perhaps inefficient and
clumsy to use. The system that I used with JDBC was
that there was a specification lead (that was me) and I
took input from everybody. We often took votes on
things, but there was one person responsible for the
integrity of the document and the standard, so I believe
it came out better as a result. The same thing got
applied in other areas of the Java community. I wrote
up what I learned from JDBC and passed it among the
Sun management about how to make a successful,
simple yet powerful standard. Those ideas eventually
evolved into the Java community process, which I
believe has worked pretty well over and over again in
different standard arenas.

SIGMOD Record, September 2015 (Vol. 44, No. 3) 51

Do you think something like that could have worked
for SQL?
It did work for SQL, because in that case, IBM was the
specification lead for something that became the
standard. And in fact if you look at almost every
successful standard like Unix, it was originally done by
one company or one small group of people and then
was adopted as a de-facto standard. The standards that
were designed by a committee have often failed. You
can find some exceptions, but generally, the best
standards were initially done by one person or one
company.

What about the Web and the W3C, where they were
working on standardizing things that don’t exist yet?
That’s hard, but it can be done. You can do standards
by committee and try to do innovation, but it’s difficult
to do innovation in a group.

Back to the “my data model is better than your data
model” argument… In a sense, that was the argument
for Java and they actually won that argument.
Yeah, Java is a nice programming language and it has
a pretty good model, but I claim that it didn’t succeed
just because it was better. I think it succeeded because
it was in the right place at the right time. In fact I was
very frustrated about the time Java came out because at
Sun we were stuck with C and C++. After being at
Xerox PARC working with languages that did
automatic garbage collection and were safe, I found
myself making stupid errors: forgetting to free
memory, clobbering memory… errors that are very
difficult to fix. Java wasn’t the first language to solve
that problem. There were other languages that were
equally good, yet they were not popular. They didn’t
take off in the way that C and C++ did. So, here with
Java, finally there was a language that was good and it
was popular and so I could expect there to be lots of
libraries and activity around it. So I got excited about it
around 1995. I left my work on relational and object
database systems at Sun, and focused on Java. Of
course I then went back and did JDBC, so I was still in
the database area. Those were exciting times -- there
were only about a dozen people in the Java group
when I joined and it grew very fast.

What was Java originally intended to be used for?
That’s a good question. James Gosling and his group
had been looking at devices like set-top boxes where
they wanted to be able to send programmed material to
a box in a remote location. Yet you wanted it to be
secure and not crash the box if there was a faulty

program. So Java took off with the Internet even
though that wasn’t the original intent. There were some
sharp people at Sun that figured out that this was a way
to convey programs in a browser and jumped on it.

Okay, so they started using it on the client side?
Yes. And my contribution to Java was thinking, “wow,
this would also be a great language for servers”,
because there, you are also trying to build websites
with some application server logic that you need to be
safe and that you need to be able to easily move
around. So I started this group doing what I called
Enterprise Java at the time, which is now known as
J2EE (or Java Enterprise Edition) to build a set of
APIs, a platform for building server side Java
programs which required additional functionality that
wasn’t necessary on the client.

How have things changed in the past decade, for
database applications?
Two things. One is that the hardware has changed.
RAM has gotten much cheaper, so that you can store a
lot of your database in memory, and flash also gives
you a way to make very fast reads and writes to
databases, which was not possible with disk. The other
thing is a change in the market in that there are a lot
more people out there trying to deal with really big
databases with lots of users because every web
company is at least dreaming of having millions of
users and they want to be able to scale up to that. So
there’s a lot of interest in scalable database systems
today, which is where I’ve been focusing in my
consulting practice.

What’s the right way to respond to those two trends?
I think there’s a lot of excitement around scalable
database systems. There’s also a lot of confusion
around them. There are perhaps a dozen new database

People%look%at%the%wrong%
things%when%they%are%trying%
to%tune%[database%systems].%
They%don’t%realize%that%the%

number%of%machine%
instructions%that%are%used%in%
a%database%call%is%now%a%
critical%factor%they%are%
trying%to%minimize.%

52 SIGMOD Record, September 2015 (Vol. 44, No. 3)

systems just in the last 18 months to 24 months1 that
are so called NoSQL database systems or are scalable
SQL database systems. So there is plenty of work for
consultants like myself who are familiar with the
various products and their strengths and weaknesses.
Customers just need to make a careful choice of what
are the requirements and which database systems really
satisfy those. That’s the age-old story in software,
making sure it solves your problem.

Did you say a dozen new products?
Yes, I would say that.

That’s a lot! So it is really responding to this need.
Yes, and most of these systems are open source. So
there are communities of people who work around
them trying to tune them. In my experience, a number
of the systems are still immature. The bugs haven’t
been shaken out and they have some performance
characteristics that are lacking when you go beyond
the simple case they were originally designed for. So I
think we’re going to see some fallout in this industry
and I’ve been doing a lot of benchmarking of systems
with my clients to look at which ones actually scale,
instead of running into all kinds of communication
bottlenecks when there are more than 4 servers.

So I would love to ask you which systems perform best
on your benchmarks but one of the lessons that
database researchers have learned is that it’s not good
to talk about that. So I won’t ask you about that but I
will ask you about what are the types of scaling that
the systems need to do and what are the good ways of
achieving it.
So, in some ways that hasn’t changed in the last 10 or
20 years. You can achieve horizontal scaling across
multiple servers by doing replication. This gives you
scalability for reads and also gives you a way to
recover from crashes. And by doing partitioning of the
database across multiple servers, you can split the load
of writes and reads over multiple servers.

That’s not new, right? I remember learning about that
in grad school. So what’s new? I guess nothing is new

1 Editor’s note: recall that this interview was conducted in

2011.

under the sun. That’s what the patent story is. It’s
nothing really new, but there must be something new
here?
Well, with the two things I mentioned… more people
are interested in this. They care and there are some
open source systems built around these ideas. The
other thing is that RAM is cheap and flash memory is
cheap and that there are new mechanisms to do faster
communication in between machines that will reduce
the overhead. Also, you get more cores per computer
now than ever before, which allows you to do better
vertical scaling on each machine.

So what is vertical scaling?
Vertical scaling is using all of those cores that you
have on a modern computer effectively. In the bad old
days, you weren’t too far off just having a single
process per machine that processed all the database
calls. Now you can’t afford to do that if you want to
utilize all the power of the computer that you have in
front of you.

So are we still in a world where we are trying to
minimize the number of disk accesses?
No, that has changed for most database systems.
Oracle, Informix, Ingres, all major database systems
were originally designed with the goal of minimizing
the number of disk accesses and now that story has
changed. There are papers about that like the one “It’s
Time for a Complete Rewrite”2. The things you’re
trying to optimize in a relational database have
changed, so it’s time for a complete rewrite. Some of
the NoSQL systems are doing their style of rewrite and
other people with products like Clustrix and VoltDB
are going in a different direction with relational
databases, taking advantage of splitting the data across
multiple machines, using RAM effectively, and so on.

Some of the age-old rules still apply and people forget
that. People forget that if you’re going to scale to a
dozen or a hundred machines, you can’t have any
manual intervention. You can’t have the database go
down and have an operator come in and fix it. The
system has to be self-repairing. When a server fails, it
has to be replaced online automatically. If you have to
change your schema, you can’t bring a hundred or a
thousand machines down while you upgrade your

2STONEBRAKER, M., MADDEN, S., ABADI, D.,

HARIZOPOULOS, S., HACHEM, N., HELLAND, P. The
end of an architectural era: it’s time for a complete rewrite.
In: VLDB, 2007. pp 1150-1160.

The%system%works%in%favor%of%
invalid%patents.%

SIGMOD Record, September 2015 (Vol. 44, No. 3) 53

schema. It has to be always online. That is something
that I often find: clients in a startup that are not
familiar with. They say, “okay, we’ll just use more
servers”. They forget you also need high availability
and continuous online operations.

Are there any new research issues there that people
haven’t already looked at?
Well there are in the performance arena, I believe,
because a lot of the performance is counter intuitive.
Where is the time actually going in a complex system
like that?

Counter intuitive? Like what?
So people look at the wrong things when they are
trying to tune. They don’t realize that the number of
machine instructions that are used in a database call is
now a critical factor they are trying to minimize. They
don’t realize that the inter-machine cost can be fairly
expensive. It can take a thousand machine instructions
just to move one byte from computer A to computer B.
So your database design has to be built for minimizing
the inter-machine calls with a new sense of urgency
that wasn’t the case in the past.

I see. Sounds like it’s time for a rewrite for the
textbooks also.
Yes, I would say so.

You spent much of your career at Sun, which didn’t
have any database product. That’s counterintuitive
too, but you exerted a lot of influence from there,
including on the standards like we were talked about
and de-facto standards. Could you have been as
influential if you were in a company that did have a
database product?
Yes and no. I did have some advantage, being in a
neutral position. For example, by working with various
database companies at Sun, which didn’t have its own
database product, I was able to get a lot of cooperation
on tuning for their database systems with our operating
system. Also with the ODMG with the object

databases companies, I was in a neutral position. Even
with Java, I was in a relatively neutral position, so that
helped.

In retrospect, working for Sun did limit my career in
many ways because we didn’t have a database system
product that I could work on. In fact, when I came to
Sun, I was hired by Eric Schmitt to start a database
group and the first thing I decided is that we actually
didn’t need a database group to build a database
system. At that time, IBM, HP, DEC and even Apollo
had their own database system and my conclusion was
that it was better for us to just work with all of the
vendors and they worked harder to have the best
performance on our platform and to sell on our
platform instead of selling against say, IBM, who had
both a database system and a server they were trying to
sell.

I flipped my position on that around 2000, 15 years
after I went to Sun, saying, “now maybe it makes sense
for Sun to have its own in-memory database cache in
front of these relational database systems and that in-
memory cache can actually evolve into being an in-
memory distributed database system”. Unfortunately
around 2001 and 2002, Sun’s profits were falling and
there was not a lot of money to start a whole new
project. I actually wasted some time at Sun thinking
each year that I was just 6 months away from getting
funding for building a distributed in-memory database
system but it never happened and I gave up around
2007, when then I went out on my own.

Speaking of being out on your own, you’re self-
employed and doing research. I’ve never heard of a
self-employed person who is doing research. So how
does that work? Are you your own funding agency?
I am, I guess. I think every software consultant actually
has to do some amount of research doing a benchmark
here, doing a study of the details of an implementation
in order to be familiar with what they are talking about.
So I might be doing a little bit more of that than others,
but I think that is actually necessary in order to give
advice on database systems.

Speaking of advice, do you have any words of advice
for fledging or mid-career database researchers or
practitioners?
Yes, that’s an area near and dear to my heart because I
started writing this book that’s been on the back burner
for a long time. It’s entitled, “Things I Wish I Learned
in Engineering School”. When I got my PhD, I went

It%would%be%easy%to%explain%
invalidity%[of%a%software%
patent]%to%someone%with%a%
bachelor’s%degree%in%
computer%science. %

%

54 SIGMOD Record, September 2015 (Vol. 44, No. 3)

out into research and then went out into industry
building products. I learned over and over again that
people waste a lot of time, spending many months or
years building something that you could have known
was not going to succeed, if you had had some
experience with things that companies do wrong.

So how can you tell if something is not going to
succeed?
Well my book is a list of rules to follow, advice to
follow to avoid the errors that people commonly fall
into. For example, rule #1 in the book is that most
organizations, most startups, most projects, try to do
too many things. They’re almost always trying to do
too many things. The landscape is littered with startups
that are trying to do too many things. In fact I’ve
consulted with for at least one of them where they
didn’t take my advice on it. So Steve Jobs for example,
whom you think is the epitome of a great leader and a
successful leader, started NeXT computer, which
failed. He tried to do his own hardware from the
bottom up. His own operating system, a new
programming language, a new window system, a new
programming environment, new tools, new ideas…
and he was trying to do it all at once with finite
resources, competing against existing players like
Apple and Microsoft on Intel, which had established
application bases. So he was working uphill in more
than one way. He violated multiple rules in my book.
He was trying to do too many things. And he was
trying to displace an established market player without
enough “better” to displace them.

Yeah there aren’t enough places for being the enough
better to displace the established leader.
So my book has four chapters. One is about successful
organizations: why organizations fail and succeed. A
second is about technology, errors that people make in
technology. Like error #33 where you come up with a
new idea that has a 30% chance of success and base it
on another new idea that has a 30% chance of success.
Now you have like a 10% chance of that your system
succeeds. The third chapter is about successful
products. There’s a rule in there that says
“wonderfulness is equal to the cosine of 2π times the
release number”.

What??
What this means here is that when you initially come
up with a new idea, it sounds wonderful and you throw
in all this other new stuff that sounds wonderful and
you finally get to a proposed release. At Release #1
you’re at the top of the curve in terms of the

wonderfulness of what you’re going to do. And then
the product gets released and you discover all of the
problems that people come in with. There are issues
and there are bugs and you realize that there are
missing features that were necessary. So you go down
the wave again, and then the second release begins
where you say, “Oh, we can fix all of that”. We’re
going to put in this and that and it’s going to be
wonderful again. We go back up the curve until
Release #2 comes out. So this is something you should
be aware of. If you go to a startup, everyone is really
excited about this first release. When you listen to
Steve Jobs talk about his product, for example, he has
this reality distortion field and everyone in the room
will be convinced that this is going to be the best thing
since sliced bread. So you just have to be aware of
these trends when you put out a product.
The final chapter is about career advice. For example,
you need to spend time increasing your effectiveness.
For example, one of the best things I ever did was take
a typing class in 8th grade. I didn’t realize at the time
how useful that was going to be to me. It’s useful as a
programmer to spend a lot of time learning about tools
and what you need to do because if you’ve got it all in
your head you’re not constantly stalled, not realizing
there’s a solution to the problem you have or a better
tool to solve the problem that you have. There are 80
rules in the book, twenty in each of those chapters,
about things that you ought to know.

Now where can I read it? Or did you just get that?
On my website, Cattell.net, there is a presentation that
I have given at the University of Illinois and a couple
other universities that summarizes some of the ideas. If
they are interested in giving me comments on the
manuscript, then they can send me an email and I’d be
happy to share it with them.

Among all your past research do you have a favorite
piece of work?
That’s a hard question. I like the work I did back in
Xerox PARC, on new kinds of user interfaces to
database systems where you can see things laid out
spatially or browse around the databases by clicking on
things. I did a little bit of work on that at Sun initially
but I was in the wrong place. I was in a hardware
company trying to do an innovative software product.
That would’ve been fun to have spent more time on.

If you magically had enough extra time to do an
additional thing at work that you’re not doing now,
what would it be?

SIGMOD Record, September 2015 (Vol. 44, No. 3) 55

In database systems, I’d like to have a little bit more
time to experiment with the properties of these
distributed systems. I’d like to setup a lab of a hundred
computers and experiment with the characteristics and
see what happens when you change the way database
systems work, but that’s a bit too big of a project.

No, it’s a fine answer because the question was if you
magically had enough time (and money, I guess),
right? If you could change one thing about yourself as
a computer science researcher, what would it be?
I think I made a mistake in my career in not choosing
to focus on either doing research or doing products and
trying to do everything at the same time for my entire
career. It would be good to do one and then do the
other and then the one. For example, I often considered

starting a company myself and doing a new kind of
database system. I didn’t want to make the sacrifice of
the time out of my personal life to do that. It also
would put my research work at a standstill. In
retrospect, it probably would have been good to go out
and make some mistakes starting a new company
(maybe more than once). Then go back into research or
whatever.

Okay, thank you very much for talking with me today.
Thank you! I’ve enjoyed your interviews on SIGMOD.
This is a great service you’re doing for our community.

Thank you!

56 SIGMOD Record, September 2015 (Vol. 44, No. 3)

