Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005
About DiSC 2
Editorial Bo
Acknowledgem
DiSC'06 Site
Search DiSC'
<<<Author Index>>>
Copyright No

Andrew McCallum

Papers on DiSC'06


Collective multi-label classification

Publications


Note: Links lead to the DBLP on the Web.

Andrew McCallum

Fuchun Peng , Andrew McCallum: Information extraction from research papers using conditional random fields. Inf. Process. Manage. 42 (4): 963-979 (2006)

Aron Culotta , Andrew McCallum: Reducing Labeling Effort for Structured Prediction Tasks. AAAI 2005 : 746-751

Wei Li , Andrew McCallum: Semi-Supervised Sequence Modeling with Syntactic Topic Models. AAAI 2005 : 813-818

Nadia Ghamrawi , Andrew McCallum: Collective multi-label classification. CIKM 2005 : 195-200

Aron Culotta , Andrew McCallum: Joint deduplication of multiple record types in relational data. CIKM 2005 : 257-258

Ron Bekkerman , Ran El-Yaniv , Andrew McCallum: Multi-way distributional clustering via pairwise interactions. ICML 2005 : 41-48

Andrew McCallum, Andrés Corrada-Emmanuel , Xuerui Wang : Topic and Role Discovery in Social Networks. IJCAI 2005 : 786-791

Xuerui Wang , Natasha Mohanty , Andrew McCallum: Group and Topic Discovery from Relations and Their Attributes. NIPS 2005

Ron Bekkerman , Andrew McCallum: Disambiguating Web appearances of people in a social network. WWW 2005 : 463-470

Andrew McCallum: Information extraction: distilling structured data from unstructured text. ACM Queue 3 (9): 48-57 (2005)

Trausti T. Kristjansson , Aron Culotta , Paul A. Viola , Andrew McCallum: Interactive Information Extraction with Constrained Conditional Random Fields. AAAI 2004 : 412-418

Aron Culotta , Ron Bekkerman , Andrew McCallum: Extracting social networks and contact information from email and the Web. CEAS 2004

Fuchun Peng , Andrew McCallum: Accurate Information Extraction from Research Papers using Conditional Random Fields. HLT-NAACL 2004 : 329-336

Charles A. Sutton , Khashayar Rohanimanesh , Andrew McCallum: Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. ICML 2004

Andrew McCallum, Ben Wellner : Conditional Models of Identity Uncertainty with Application to Noun Coreference. NIPS 2004

David Pinto , Andrew McCallum, Xing Wei , W. Bruce Croft : Table Extraction Using Conditional Random Fields. DG.O 2003

Andrew McCallum, Ben Wellner : Toward Conditional Models of Identity Uncertainty with Application to Proper Noun Coreference. IIWeb 2003 : 79-84

Rajat Raina , Yirong Shen , Andrew Y. Ng , Andrew McCallum: Classification with Hybrid Generative/Discriminative Models. NIPS 2003

David Pinto , Andrew McCallum, Xing Wei , W. Bruce Croft : Table extraction using conditional random fields. SIGIR 2003 : 235-242

Andrew McCallum: Efficiently Inducing Features of Conditional Random Fields. UAI 2003 : 403-410

Wei Li , Andrew McCallum: Rapid development of Hindi named entity recognition using conditional random fields and feature induction. ACM Trans. Asian Lang. Inf. Process. 2 (3): 290-294 (2003)

James Allan , Jay Aslam , Nicholas J. Belkin , Chris Buckley , James P. Callan , W. Bruce Croft , Susan T. Dumais , Norbert Fuhr , Donna Harman , David J. Harper , Djoerd Hiemstra , Thomas Hofmann , Eduard H. Hovy , Wessel Kraaij , John D. Lafferty , Victor Lavrenko , David D. Lewis , Liz Liddy , R. Manmatha , Andrew McCallum, Jay M. Ponte , John M. Prager , Dragomir R. Radev , Philip Resnik , Stephen E. Robertson , Ronald Rosenfeld , Salim Roukos , Mark Sanderson , Rich Schwartz , Amit Singhal , Alan F. Smeaton , Howard R. Turtle , Ellen M. Voorhees , Ralph M. Weischedel , Jinxi Xu , ChengXiang Zhai : Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002. SIGIR Forum 37 (1): 31-47 (2003)

David M. Blei , J. Andrew Bagnell , Andrew McCallum: Learning with Scope, with Application to Information Extraction and Classification. UAI 2002 : 53-60

John D. Lafferty , Andrew McCallum, Fernando C. N. Pereira : Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. ICML 2001 : 282-289

Nicholas Roy , Andrew McCallum: Toward Optimal Active Learning through Sampling Estimation of Error Reduction. ICML 2001 : 441-448

Dayne Freitag , Andrew McCallum: Information Extraction with HMM Structures Learned by Stochastic Optimization. AAAI/IAAI 2000 : 584-589

Huan Chang , David Cohn , Andrew McCallum: Learning to Create Customized Authority Lists. ICML 2000 : 127-134

Andrew McCallum, Dayne Freitag , Fernando C. N. Pereira : Maximum Entropy Markov Models for Information Extraction and Segmentation. ICML 2000 : 591-598

Andrew McCallum, Kamal Nigam , Lyle H. Ungar : Efficient clustering of high-dimensional data sets with application to reference matching. KDD 2000 : 169-178

Mark Craven , Dan DiPasquo , Dayne Freitag , Andrew McCallum, Tom M. Mitchell , Kamal Nigam , Seán Slattery : Learning to construct knowledge bases from the World Wide Web. Artif. Intell. 118 (1-2): 69-113 (2000)

William W. Cohen , Andrew McCallum, Dallan Quass : Learning to Understand the Web. IEEE Data Eng. Bull. 23 (3): 17-24 (2000)

Andrew McCallum, Kamal Nigam , Jason Rennie , Kristie Seymore : Automating the Construction of Internet Portals with Machine Learning. Inf. Retr. 3 (2): 127-163 (2000)

Kamal Nigam , Andrew McCallum, Sebastian Thrun , Tom M. Mitchell : Text Classification from Labeled and Unlabeled Documents using EM. Machine Learning 39 (2/3): 103-134 (2000)

Jason Rennie , Andrew McCallum: Using Reinforcement Learning to Spider the Web Efficiently. ICML 1999 : 335-343

Andrew McCallum, Kamal Nigam , Jason Rennie , Kristie Seymore : A Machine Learning Approach to Building Domain-Specific Search Engines. IJCAI 1999 : 662-667

Mark Craven , Dan DiPasquo , Dayne Freitag , Andrew McCallum, Tom M. Mitchell , Kamal Nigam , Seán Slattery : Learning to Extract Symbolic Knowledge from the World Wide Web. AAAI/IAAI 1998 : 509-516

Kamal Nigam , Andrew McCallum, Sebastian Thrun , Tom M. Mitchell : Learning to Classify Text from Labeled and Unlabeled Documents. AAAI/IAAI 1998 : 792-799

Andrew McCallum, Kamal Nigam : Employing EM and Pool-Based Active Learning for Text Classification. ICML 1998 : 350-358

Andrew McCallum, Ronald Rosenfeld , Tom M. Mitchell , Andrew Y. Ng : Improving Text Classification by Shrinkage in a Hierarchy of Classes. ICML 1998 : 359-367

L. Douglas Baker , Andrew McCallum: Distributional Clustering of Words for Text Classification. SIGIR 1998 : 96-103

Andrew McCallum: Instance-Based Utile Distinctions for Reinforcement Learning with Hidden State. ICML 1995 : 387-395

Andrew McCallum: Instance-Based State Identification for Reinforcement Learning. NIPS 1994 : 377-384

Andrew McCallum: Overcoming Incomplete Perception with Util Distinction Memory. ICML 1993 : 190-196

Andrew McCallum: Using Transitional Proximity for Faster Reinforcement Learning. ML 1992 : 316-321

Andrew McCallum, Kent A. Spackman : Using Genetic Algorithms to Learn Disjunctive Rules from Examples. ML 1990 : 149-152

1 [ 24 ]

2 [ 24 ]

3 [ 23 ]

4 [ 6 ]

5 [ 34 ] [ 37 ] [ 40 ]

6 [ 24 ]

7 [ 23 ]

8 [ 24 ]

9 [ 24 ]

10 [ 19 ]

11 [ 15 ]

12 [ 19 ]

13 [ 39 ]

14 [ 10 ] [ 16 ]

15 [ 24 ] [ 27 ] [ 30 ]

16 [ 34 ] [ 35 ] [ 41 ] [ 44 ]

17 [ 10 ] [ 16 ]

18 [ 24 ]

19 [ 40 ]

20 [ 10 ] [ 16 ] [ 18 ] [ 20 ]

21 [ 24 ]

22 [ 42 ]

23 [ 24 ]

24 [ 24 ]

25 [ 24 ]

26 [ 24 ]

27 [ 24 ]

28 [ 24 ]

29 [ 35 ]

30 [ 22 ] [ 24 ]

31 [ 24 ]

32 [ 24 ]

33 [ 25 ] [ 43 ]

34 [ 24 ]

35 [ 24 ]

36 [ 7 ] [ 9 ] [ 10 ] [ 13 ] [ 16 ]

37 [ 38 ]

38 [ 7 ] [ 28 ]

39 [ 8 ] [ 9 ] [ 10 ] [ 11 ] [ 13 ] [ 14 ] [ 16 ] [ 17 ]

40 [ 33 ] [ 45 ]

41 [ 18 ] [ 22 ]

42 [ 27 ] [ 30 ]

43 [ 24 ]

44 [ 24 ]

45 [ 15 ]

46 [ 24 ]

47 [ 28 ]

48 [ 11 ] [ 12 ] [ 14 ]

49 [ 24 ]

50 [ 24 ]

51 [ 32 ]

52 [ 7 ] [ 24 ]

53 [ 24 ]

54 [ 21 ]

55 [ 24 ]

56 [ 24 ]

57 [ 11 ] [ 14 ]

58 [ 28 ]

59 [ 24 ]

60 [ 10 ] [ 16 ]

61 [ 24 ]

62 [ 1 ]

63 [ 32 ]

64 [ 9 ] [ 13 ]

65 [ 24 ]

66 [ 17 ]

67 [ 35 ]

68 [ 24 ]

69 [ 38 ] [ 39 ]

70 [ 27 ] [ 30 ]

71 [ 24 ]

72 [ 29 ] [ 31 ]

73 [ 24 ]

74 [ 24 ]




©2006 Association for Computing Machinery