Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005
About DiSC 2
Editorial Bo
Acknowledgem
DiSC'06 Site
Search DiSC'
<<<Author Index>>>
Copyright No

Avrim Blum

Papers on DiSC'06


Practical Privacy: The SuLQ Framework

Publications


Note: Links lead to the DBLP on the Web.

Avrim Blum

Maria-Florina Balcan , Avrim Blum: A PAC-Style Model for Learning from Labeled and Unlabeled Data. COLT 2005 : 111-126

Avrim Blum, Yishay Mansour : From External to Internal Regret. COLT 2005 : 621-636

Maria-Florina Balcan , Avrim Blum: Mechanism Design via Machine Learning. FOCS 2005 : 605-614

Shobha Venkataraman , Dawn Xiaodong Song , Phillip B. Gibbons , Avrim Blum: New Streaming Algorithms for Fast Detection of Superspreaders. NDSS 2005

Avrim Blum, Cynthia Dwork , Frank McSherry , Kobbi Nissim : Practical privacy: the SuLQ framework. PODS 2005 : 128-138

Avrim Blum: Random Projection, Margins, Kernels, and Feature-Selection. SLSFS 2005 : 52-68

Avrim Blum, Jason D. Hartline : Near-optimal online auctions. SODA 2005 : 1156-1163

Maria-Florina Balcan , Avrim Blum, Santosh Vempala : On Kernels, Margins, and Low-Dimensional Mappings. ALT 2004 : 194-205

H. Brendan McMahan , Avrim Blum: Online Geometric Optimization in the Bandit Setting Against an Adaptive Adversary. COLT 2004 : 109-123

Avrim Blum, John D. Lafferty , Mugizi Robert Rwebangira , Rajashekar Reddy : Semi-supervised learning using randomized mincuts. ICML 2004

Maria-Florina Balcan , Avrim Blum, Ke Yang : Co-Training and Expansion: Towards Bridging Theory and Practice. NIPS 2004

Avrim Blum, Dawn Xiaodong Song , Shobha Venkataraman : Detection of Interactive Stepping Stones: Algorithms and Confidence Bounds. RAID 2004 : 258-277

Nikhil Bansal , Avrim Blum, Shuchi Chawla , Adam Meyerson : Approximation algorithms for deadline-TSP and vehicle routing with time-windows. STOC 2004 : 166-174

Avrim Blum, Jeffrey C. Jackson , Tuomas Sandholm , Martin Zinkevich : Preference Elicitation and Query Learning. Journal of Machine Learning Research 5 : 649-667 (2004)

Nikhil Bansal , Avrim Blum, Shuchi Chawla : Correlation Clustering. Machine Learning 56 (1-3): 89-113 (2004)

Avrim Blum, Vijay Kumar , Atri Rudra , Felix Wu : Online learning in online auctions. Theor. Comput. Sci. 324 (2-3): 137-146 (2004)

Martin Zinkevich , Avrim Blum, Tuomas Sandholm : On polynomial-time preference elicitation with value queries. ACM Conference on Electronic Commerce 2003 : 176-185

Avrim Blum, Jeffrey C. Jackson , Tuomas Sandholm , Martin Zinkevich : Preference Elicitation and Query Learning. COLT 2003 : 13-25

Avrim Blum, John Langford : PAC-MDL Bounds. COLT 2003 : 344-357

Avrim Blum: Learning a Function of r Relevant Variables. COLT 2003 : 731-733

Nikhil Bansal , Avrim Blum, Shuchi Chawla , Kedar Dhamdhere : Scheduling for Flow-Time with Admission Control. ESA 2003 : 43-54

Avrim Blum: Machine Learning: My Favorite Results, Directions, and Open Problems. FOCS 2003 : 2-

Avrim Blum, Shuchi Chawla , David R. Karger , Terran Lane , Adam Meyerson , Maria Minkoff : Approximation Algorithms for Orienteering and Discounted-Reward TSP. FOCS 2003 : 46-55

H. Brendan McMahan , Geoffrey J. Gordon , Avrim Blum: Planning in the Presence of Cost Functions Controlled by an Adversary. ICML 2003 : 536-543

Ke Yang , Avrim Blum: On Statistical Query Sampling and NMR Quantum Computing. IEEE Conference on Computational Complexity 2003 : 194-

Avrim Blum, Vijay Kumar , Atri Rudra , Felix Wu : Online learning in online auctions. SODA 2003 : 202-204

Yossi Azar , Avrim Blum, Yishay Mansour : Combining online algorithms for rejection and acceptance. SPAA 2003 : 159-163

Nikhil Bansal , Avrim Blum, Shuchi Chawla , Adam Meyerson : Online oblivious routing. SPAA 2003 : 44-49

Avrim Blum, Shuchi Chawla , Adam Kalai : Static Optimality and Dynamic Search-Optimality in Lists and Trees. Algorithmica 36 (3): 249-260 (2003)

Avrim Blum, Ke Yang : On Statistical Query Sampling and NMR Quantum Computing Electronic Colloquium on Computational Complexity (ECCC) 10 (014): (2003)

Avrim Blum, Adam Kalai , Hal Wasserman : Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50 (4): 506-519 (2003)

John Langford , Avrim Blum: Microchoice Bounds and Self Bounding Learning Algorithms. Machine Learning 51 (2): 165-179 (2003)

Nikhil Bansal , Avrim Blum, Shuchi Chawla : Correlation Clustering. FOCS 2002 : 238-

Avrim Blum, Shuchi Chawla , Adam Kalai : Static optimality and dynamic search-optimality in lists and trees. SODA 2002 : 1-8

Avrim Blum, John Dunagan : Smoothed analysis of the perceptron algorithm for linear programming. SODA 2002 : 905-914

Avrim Blum, Tuomas Sandholm , Martin Zinkevich : Online algorithms for market clearing. SODA 2002 : 971-980

Avrim Blum, Shuchi Chawla : Learning from Labeled and Unlabeled Data using Graph Mincuts. ICML 2001 : 19-26

Avrim Blum, Adam Kalai , Jon M. Kleinberg : Admission Control to Minimize Rejections. WADS 2001 : 155-164

Joseph O'Sullivan , John Langford , Rich Caruana , Avrim Blum: FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness. ICML 2000 : 703-710

Avrim Blum, Adam Kalai , Hal Wasserman : Noise-tolerant learning, the parity problem, and the statistical query model. STOC 2000 : 435-440

Avrim Blum, Adam Kalai , Hal Wasserman : Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model CoRR cs.LG/0010022 : (2000)

Avrim Blum, Carl Burch : On-line Learning and the Metrical Task System Problem. Machine Learning 39 (1): 35-58 (2000)

Avrim Blum, Prasad Chalasani : An Online Algorithm for Improving Performance in Navigation. SIAM J. Comput. 29 (6): 1907-1938 (2000)

Avrim Blum, Howard J. Karloff , Yuval Rabani , Michael E. Saks : A Decomposition Theorem for Task Systems and Bounds for Randomized Server Problems. SIAM J. Comput. 30 (5): 1624-1661 (2000)

Avrim Blum, Goran Konjevod , R. Ravi , Santosh Vempala : Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. Theor. Comput. Sci. 235 (1): 25-42 (2000)

Avrim Blum, Adam Kalai , John Langford : Beating the Hold-Out: Bounds for K-fold and Progressive Cross-Validation. COLT 1999 : 203-208

John Langford , Avrim Blum: Microchoice Bounds and Self Bounding Learning Algorithms. COLT 1999 : 209-214

Avrim Blum, John Langford : Probabilistic Planning in the Graphplan Framework. ECP 1999 : 319-332

Avrim Blum, Carl Burch , Adam Kalai : Finely-Competitive Paging. FOCS 1999 : 450-458

Avrim Blum, R. Ravi , Santosh Vempala : A Constant-Factor Approximation Algorithm for the k -MST Problem. J. Comput. Syst. Sci. 58 (1): 101-108 (1999)

Avrim Blum, Adam Kalai : Universal Portfolios With and Without Transaction Costs. Machine Learning 35 (3): 193-205 (1999)

Avrim Blum, Tom M. Mitchell : Combining Labeled and Unlabeled Sata with Co-Training. COLT 1998 : 92-100

Avrim Blum, Carl Burch , John Langford : On Learning Monotone Boolean Functions. FOCS 1998 : 408-415

Avrim Blum, Goran Konjevod , R. Ravi , Santosh Vempala : Semi-Definite Relaxations for Minimum Bandwidth and other Vertex-Ordering Problems. STOC 1998 : 100-105

Avrim Blum, Alan M. Frieze , Ravi Kannan , Santosh Vempala : A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions. Algorithmica 22 (1/2): 35-52 (1998)

Avrim Blum, Prasad Chalasani , Sally A. Goldman , Donna K. Slonim : Learning with Unreliable Boundary Queries. J. Comput. Syst. Sci. 56 (2): 209-222 (1998)

Avrim Blum, Adam Kalai : A Note on Learning from Multiple-Instance Examples. Machine Learning 30 (1): 23-29 (1998)

Howard Aizenstein , Avrim Blum, Roni Khardon , Eyal Kushilevitz , Leonard Pitt , Dan Roth : On Learning Read-k-Satisfy-j DNF. SIAM J. Comput. 27 (6): 1515-1530 (1998)

Baruch Awerbuch , Yossi Azar , Avrim Blum, Santosh Vempala : New Approximation Guarantees for Minimum-Weight k-Trees and Prize-Collecting Salesmen. SIAM J. Comput. 28 (1): 254-262 (1998)

Joseph S. B. Mitchell , Avrim Blum, Prasad Chalasani , Santosh Vempala : A Constant-Factor Approximation Algorithm for the Geometric k-MST Problem in the Plane. SIAM J. Comput. 28 (3): 771-781 (1998)

Avrim Blum, Adam Kalai : Universal Portfolios With and Without Transaction Costs. COLT 1997 : 309-313

Avrim Blum, Carl Burch : On-line Learning and the Metrical Task System Problem. COLT 1997 : 45-53

Yair Bartal , Avrim Blum, Carl Burch , Andrew Tomkins : A polylog( n )-Competitive Algorithm for Metrical Task Systems. STOC 1997 : 711-719

Avrim Blum, Merrick L. Furst : Fast Planning Through Planning Graph Analysis. Artif. Intell. 90 (1-2): 281-300 (1997)

Avrim Blum, Pat Langley : Selection of Relevant Features and Examples in Machine Learning. Artif. Intell. 97 (1-2): 245-271 (1997)

Avrim Blum, David R. Karger : An Õ(n^{3/14})-Coloring Algorithm for 3-Colorable Graphs. Inf. Process. Lett. 61 (1): 49-53 (1997)

Avrim Blum, Ravindran Kannan : Learning an Intersection of a Constant Number of Halfspaces over a Uniform Distribution. J. Comput. Syst. Sci. 54 (2): 371-380 (1997)

Avrim Blum: Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain. Machine Learning 26 (1): 5-23 (1997)

Avrim Blum, Prabhakar Raghavan , Baruch Schieber : Navigating in Unfamiliar Geometric Terrain. SIAM J. Comput. 26 (1): 110-137 (1997)

Avrim Blum, Alan M. Frieze , Ravi Kannan , Santosh Vempala : A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions. FOCS 1996 : 330-338

Avrim Blum: On-line Algorithms in Machine Learning. Online Algorithms 1996 : 306-325

Piotr Berman , Avrim Blum, Amos Fiat , Howard J. Karloff , Adi Rosén , Michael E. Saks : Randomized Robot Navigation Algorithms. SODA 1996 : 75-84

Avrim Blum, R. Ravi , Santosh Vempala : A Constant-factor Approximation Algorithm for the k MST Problem (Extended Abstract). STOC 1996 : 442-448

Avrim Blum, Prasad Chalasani , Sally A. Goldman , Donna K. Slonim : Learning with Unreliable Boundary Queries. COLT 1995 : 98-107

Avrim Blum: Empirical Support for Winnow and Weighted-Majority Based Algorithms: Results on a Calendar Scheduling Domain. ICML 1995 : 64-72

Avrim Blum, Merrick L. Furst : Fast Planning Through Planning Graph Analysis. IJCAI 1995 : 1636-1642

Baruch Awerbuch , Yossi Azar , Avrim Blum, Santosh Vempala : Improved approximation guarantees for minimum-weight k -trees and prize-collecting salesmen. STOC 1995 : 277-283

Avrim Blum, Prasad Chalasani , Santosh Vempala : A constant-factor approximation for the k -MST problem in the plane. STOC 1995 : 294-302

Avrim Blum, Joel Spencer : Coloring Random and Semi-Random k-Colorable Graphs. J. Algorithms 19 (2): 204-234 (1995)

Avrim Blum, Lisa Hellerstein , Nick Littlestone : Learning in the Presence of Finitely or Infinitely Many Irrelevant Attributes. J. Comput. Syst. Sci. 50 (1): 32-40 (1995)

Avrim Blum, Steven Rudich : Fast Learning of k-Term DNF Formulas with Queries. J. Comput. Syst. Sci. 51 (3): 367-373 (1995)

Avrim Blum, Roni Khardon , Eyal Kushilevitz , Leonard Pitt , Dan Roth : On Learning Read- k -Satisfy- j DNF. COLT 1994 : 110-117

Avrim Blum, Prasad Chalasani , Don Coppersmith , William R. Pulleyblank , Prabhakar Raghavan , Madhu Sudan : The minimum latency problem. STOC 1994 : 163-171

Avrim Blum, Merrick L. Furst , Jeffrey C. Jackson , Michael J. Kearns , Yishay Mansour , Steven Rudich : Weakly learning DNF and characterizing statistical query learning using Fourier analysis. STOC 1994 : 253-262

Avrim Blum: New Approximation Algorithms for Graph Coloring. J. ACM 41 (3): 470-516 (1994)

Avrim Blum, Ming Li , John Tromp , Mihalis Yannakakis : Linear Approximation of Shortest Superstrings. J. ACM 41 (4): 630-647 (1994)

Avrim Blum: Separating Distribution-Free and Mistake-Bound Learning Models over the Boolean Domain. SIAM J. Comput. 23 (5): 990-1000 (1994)

Avrim Blum, Prasad Chalasani , Jeffrey Jackson : On Learning Embedded Symmetric Concepts. COLT 1993 : 337-346

Avrim Blum, Merrick L. Furst , Michael J. Kearns , Richard J. Lipton : Cryptographic Primitives Based on Hard Learning Problems. CRYPTO 1993 : 278-291

Avrim Blum, Prasad Chalasani : An On-Line Algorithm for Improving Performance in Navigation FOCS 1993 : 2-11

Avrim Blum, Ravi Kannan : Learning an Intersection of k Halfspaces over a Uniform Distribution FOCS 1993 : 312-320

Avrim Blum, Ronald L. Rivest : Training a 3-Node Neural Network is NP-Complete. Machine Learning: From Theory to Applications 1993 : 9-28

Avrim Blum, Prasad Chalasani : Learning Switching Concepts. COLT 1992 : 231-242

Avrim Blum, Howard J. Karloff , Yuval Rabani , Michael E. Saks : A Decomposition Theorem and Bounds for Randomized Server Problems FOCS 1992 : 197-207

Avrim Blum, Steven Rudich : Fast Learning of k-Term DNF Formulas with Queries STOC 1992 : 382-389

Avrim Blum: Rank-r Decision Trees are a Subclass of r-Decision Lists. Inf. Process. Lett. 42 (4): 183-185 (1992)

Avrim Blum: Learning Boolean Functions in an Infinite Attribute Space. Machine Learning 9 : 373-386 (1992)

Avrim Blum, Ronald L. Rivest : Training a 3-node neural network is NP-complete. Neural Networks 5 (1): 117-127 (1992)

Avrim Blum, Lisa Hellerstein , Nick Littlestone : Learning in the Presence of Finitely or Infinitely Many Irrelevant Attributes. COLT 1991 : 157-166

Avrim Blum, Tao Jiang , Ming Li , John Tromp , Mihalis Yannakakis : Linear Approximation of Shortest Superstrings STOC 1991 : 328-336

Avrim Blum, Prabhakar Raghavan , Baruch Schieber : Navigating in Unfamiliar Geometric Terrain (Preliminary Version) STOC 1991 : 494-504

Avrim Blum, Mona Singh : Learning Functions of k Terms. COLT 1990 : 144-153

Avrim Blum: Separating PAC and Mistake-Bound Learning Models Over the Boolean Domain (Abstract). COLT 1990 : 393

Avrim Blum: Separating Distribution-Free and Mistake-Bound Learning Models over the Boolean Domain FOCS 1990 : 211-218

Avrim Blum: Some Tools for Approximate 3-Coloring (Extended Abstract) FOCS 1990 : 554-562

Avrim Blum: Learning Boolean Functions in an Infinite Atribute Space (Extended Abstract) STOC 1990 : 64-72

Avrim Blum: An \tildeO(n^0.4)-Approximation Algorithm for 3-Coloring (and Improved Approximation Algorithm for k-Coloring) STOC 1989 : 535-542

Avrim Blum, Ronald L. Rivest : Training a 3-Node Neural Network is NP-Complete. COLT 1988 : 9-18

Avrim Blum, Ronald L. Rivest : Training a 3-Node Neural Network is NP-Complete. NIPS 1988 : 494-501

1 [ 52 ]

2 [ 33 ] [ 51 ]

3 [ 33 ] [ 51 ] [ 83 ]

4 [ 99 ] [ 102 ] [ 107 ] [ 109 ]

5 [ 77 ] [ 82 ] [ 89 ] [ 95 ] [ 97 ]

6 [ 47 ]

7 [ 38 ]

8 [ 47 ] [ 48 ] [ 57 ] [ 61 ] [ 68 ]

9 [ 71 ]

10 [ 17 ] [ 20 ] [ 22 ] [ 27 ] [ 32 ] [ 36 ] [ 50 ] [ 54 ] [ 67 ]

11 [ 73 ] [ 76 ] [ 77 ] [ 81 ] [ 82 ] [ 87 ] [ 89 ] [ 95 ] [ 97 ]

12 [ 27 ]

13 [ 89 ]

14 [ 75 ]

15 [ 105 ]

16 [ 38 ]

17 [ 40 ] [ 55 ]

18 [ 21 ] [ 26 ] [ 34 ] [ 46 ]

19 [ 106 ]

20 [ 36 ] [ 54 ]

21 [ 86 ]

22 [ 103 ]

23 [ 11 ] [ 30 ]

24 [ 22 ]

25 [ 26 ] [ 92 ] [ 96 ]

26 [ 10 ]

27 [ 49 ] [ 53 ] [ 59 ] [ 61 ] [ 64 ] [ 69 ] [ 70 ] [ 72 ] [ 76 ] [ 79 ] [ 81 ]

28 [ 19 ] [ 40 ] [ 43 ] [ 55 ]

29 [ 44 ] [ 87 ]

30 [ 16 ] [ 38 ] [ 66 ]

31 [ 21 ] [ 26 ]

32 [ 28 ] [ 52 ]

33 [ 72 ]

34 [ 56 ] [ 65 ]

35 [ 84 ] [ 94 ]

36 [ 28 ] [ 52 ]

37 [ 100 ]

38 [ 87 ]

39 [ 57 ] [ 62 ] [ 63 ] [ 64 ] [ 71 ] [ 78 ] [ 91 ]

40 [ 45 ]

41 [ 10 ] [ 24 ]

42 [ 21 ]

43 [ 11 ] [ 30 ]

44 [ 26 ] [ 83 ] [ 108 ]

45 [ 86 ] [ 101 ]

46 [ 105 ]

47 [ 82 ] [ 87 ] [ 97 ]

48 [ 87 ]

49 [ 50 ]

50 [ 58 ]

51 [ 105 ]

52 [ 71 ]

53 [ 28 ] [ 52 ]

54 [ 27 ]

55 [ 16 ] [ 66 ]

56 [ 9 ] [ 27 ] [ 41 ]

57 [ 37 ] [ 56 ] [ 60 ] [ 65 ]

58 [ 100 ]

59 [ 1 ] [ 2 ] [ 12 ] [ 18 ]

60 [ 38 ]

61 [ 28 ] [ 52 ]

62 [ 15 ] [ 26 ] [ 29 ]

63 [ 84 ] [ 94 ]

64 [ 100 ]

65 [ 16 ] [ 38 ] [ 66 ]

66 [ 74 ] [ 92 ] [ 93 ] [ 96 ]

67 [ 9 ] [ 41 ]

68 [ 8 ]

69 [ 36 ] [ 54 ]

70 [ 98 ] [ 106 ]

71 [ 31 ]

72 [ 27 ]

73 [ 47 ]

74 [ 10 ] [ 24 ]

75 [ 32 ] [ 33 ] [ 37 ] [ 40 ] [ 50 ] [ 51 ] [ 55 ] [ 56 ] [ 60 ] [ 65 ] [ 102 ]

76 [ 98 ] [ 106 ]

77 [ 69 ] [ 70 ] [ 79 ]

78 [ 84 ] [ 94 ]

79 [ 80 ] [ 85 ] [ 99 ]

80 [ 10 ] [ 24 ]

81 [ 74 ] [ 92 ] [ 93 ] [ 96 ]




©2006 Association for Computing Machinery