![]() ![]() ![]() | ![]() |
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: Links lead to the DBLP on the Web. Raymond J. Mooney Rohit J. Kate , Yuk Wah Wong , Raymond J. Mooney: Learning to Transform Natural to Formal Languages. AAAI 2005 : 1062-1068 Prem Melville , Stewart M. Yang , Maytal Saar-Tsechansky , Raymond J. Mooney: Active Learning for Probability Estimation Using Jensen-Shannon Divergence. ECML 2005 : 268-279 Yuk Lai Suen , Prem Melville , Raymond J. Mooney: Combining Bias and Variance Reduction Techniques for Regression Trees. ECML 2005 : 741-749 Prem Melville , Foster J. Provost , Raymond J. Mooney: An Expected Utility Approach to Active Feature-Value Acquisition. ICDM 2005 : 745-748 Brian Kulis , Sugato Basu , Inderjit S. Dhillon , Raymond J. Mooney: Semi-supervised graph clustering: a kernel approach. ICML 2005 : 457-464 Arindam Banerjee , Chase Krumpelman , Joydeep Ghosh , Sugato Basu , Raymond J. Mooney: Model-based overlapping clustering. KDD 2005 : 532-537 Razvan C. Bunescu , Raymond J. Mooney: Subsequence Kernels for Relation Extraction. NIPS 2005 Razvan C. Bunescu , Ruifang Ge , Rohit J. Kate , Edward M. Marcotte , Raymond J. Mooney, Arun K. Ramani , Yuk Wah Wong : Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine 33 (2): 139-155 (2005) Prem Melville , Raymond J. Mooney: Creating diversity in ensembles using artificial data. Information Fusion 6 (1): 99-111 (2005) Raymond J. Mooney, Razvan C. Bunescu : Mining knowledge from text using information extraction. SIGKDD Explorations 7 (1): 3-10 (2005) Razvan C. Bunescu , Raymond J. Mooney: Collective Information Extraction with Relational Markov Networks. ACL 2004 : 438-445 Prem Melville , Maytal Saar-Tsechansky , Foster J. Provost , Raymond J. Mooney: Active Feature-Value Acquisition for Classifier Induction. ICDM 2004 : 483-486 Prem Melville , Raymond J. Mooney: Diverse ensembles for active learning. ICML 2004 Mikhail Bilenko , Sugato Basu , Raymond J. Mooney: Integrating constraints and metric learning in semi-supervised clustering. ICML 2004 Sugato Basu , Mikhail Bilenko , Raymond J. Mooney: A probabilistic framework for semi-supervised clustering. KDD 2004 : 59-68 Prem Melville , Nishit Shah , Lilyana Mihalkova , Raymond J. Mooney: Experiments on Ensembles with Missing and Noisy Data. Multiple Classifier Systems 2004 : 293-302 Sugato Basu , Arindam Banerjee , Raymond J. Mooney: Active Semi-Supervision for Pairwise Constrained Clustering. SDM 2004 Mikhail Bilenko , Raymond J. Mooney: Employing Trainable String Similarity Metrics for Information Integration. IIWeb 2003 : 67-72 Prem Melville , Raymond J. Mooney: Constructing Diverse Classifier Ensembles using Artificial Training Examples. IJCAI 2003 : 505-512 Mikhail Bilenko , Raymond J. Mooney: Adaptive duplicate detection using learnable string similarity measures. KDD 2003 : 39-48 Mikhail Bilenko , Raymond J. Mooney, William W. Cohen , Pradeep Ravikumar , Stephen E. Fienberg : Adaptive Name Matching in Information Integration. IEEE Intelligent Systems 18 (5): 16-23 (2003) Cynthia A. Thompson , Raymond J. Mooney: Acquiring Word-Meaning Mappings for Natural Language Interfaces. J. Artif. Intell. Res. (JAIR) 18 : 1-44 (2003) Mary Elaine Califf , Raymond J. Mooney: Bottom-Up Relational Learning of Pattern Matching Rules for Information Extraction. Journal of Machine Learning Research 4 : 177-210 (2003) Prem Melville , Raymond J. Mooney, Ramadass Nagarajan : Content-Boosted Collaborative Filtering for Improved Recommendations. AAAI/IAAI 2002 : 187-192 Un Yong Nahm , Raymond J. Mooney: Mining soft-matching association rules. CIKM 2002 : 681-683 Sugato Basu , Arindam Banerjee , Raymond J. Mooney: Semi-supervised Clustering by Seeding. ICML 2002 : 27-34 Lappoon R. Tang , Raymond J. Mooney: Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing. ECML 2001 : 466-477 Un Yong Nahm , Raymond J. Mooney: Mining Soft-Matching Rules from Textual Data. IJCAI 2001 : 979-986 Sugato Basu , Raymond J. Mooney, Krupakar V. Pasupuleti , Joydeep Ghosh : Evaluating the novelty of text-mined rules using lexical knowledge. KDD 2001 : 233-238 Un Yong Nahm , Raymond J. Mooney: A Mutually Beneficial Integration of Data Mining and Information Extraction. AAAI/IAAI 2000 : 627-632 Raymond J. Mooney, Loriene Roy : Content-based book recommending using learning for text categorization. ACM DL 2000 : 195-204 Mary Elaine Califf , Raymond J. Mooney: Relational Learning of Pattern-Match Rules for Information Extraction. AAAI/IAAI 1999 : 328-334 Cynthia A. Thompson , Raymond J. Mooney: Automatic Construction of Semantic Lexicons for Learning Natural Language Interfaces. AAAI/IAAI 1999 : 487-493 Cynthia A. Thompson , Mary Elaine Califf , Raymond J. Mooney: Active Learning for Natural Language Parsing and Information Extraction. ICML 1999 : 406-414 Raymond J. Mooney: Learning for Semantic Interpretation: Scaling Up without Dumbing Down. Learning Language in Logic 1999 : 57-66 Raymond J. Mooney, Loriene Roy : Content-Based Book Recommending Using Learning for Text Categorization CoRR cs.DL/9902011 : (1999) Claire Cardie , Raymond J. Mooney: Guest Editors' Introduction: Machine Learning and Natural Language. Machine Learning 34 (1-3): 5-9 (1999) Sowmya Ramachandran , Raymond J. Mooney: Theory Refinement of Bayesian Networks with Hidden Variables. ICML 1998 : 454-462 Mary Elaine Califf , Raymond J. Mooney: Advantages of Decision Lists and Implicit Negatives in Inductive Logic Programming. New Generation Comput. 16 (3): 263-281 (1998) Ulf Hermjakob , Raymond J. Mooney: Learning Parse and Translation Decisions from Examples with Rich Context. ACL 1997 : 482-489 Tara A. Estlin , Raymond J. Mooney: Learning to Improve both Efficiency and Quality of Planning. IJCAI 1997 : 1227-1233 Eric Brill , Raymond J. Mooney: An Overview of Empirical Natural Language Processing. AI Magazine 18 (4): 13-24 (1997) Ulf Hermjakob , Raymond J. Mooney: Learning Parse and Translation Decisions From Examples With Rich Context CoRR cmp-lg/9706002 : (1997) Paul T. Baffes , Raymond J. Mooney: A Novel Application of Theory Refinement to Student Modeling. AAAI/IAAI, Vol. 1 1996 : 403-408 Tara A. Estlin , Raymond J. Mooney: Multi-Strategy Learning of Search Control for Partial-Order Planning. AAAI/IAAI, Vol. 1 1996 : 843-848 John M. Zelle , Raymond J. Mooney: Learning to Parse Database Queries Using Inductive Logic Programming. AAAI/IAAI, Vol. 2 1996 : 1050-1055 Siddarth Subramanian , Raymond J. Mooney: Qualitative Multiple-Fault Diagnosis of Continuous Dynamic Systems Using Behavioral Modes. AAAI/IAAI, Vol. 2 1996 : 965-970 Raymond J. Mooney: Inductive Logic Programming for Natural Language Processing. Inductive Logic Programming Workshop 1996 : 3-22 Raymond J. Mooney: Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning CoRR cmp-lg/9612001 : (1996) John M. Zelle , Raymond J. Mooney: Comparative results on using inductive logic programming for corpus-based parser construction. Learning for Natural Language Processing 1995 : 355-369 Raymond J. Mooney, Mary Elaine Califf : Learning the past tense of English verbs using inductive logic programming. Learning for Natural Language Processing 1995 : 370-384 Raymond J. Mooney, Mary Elaine Califf : Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs. J. Artif. Intell. Res. (JAIR) 3 : 1-24 (1995) Raymond J. Mooney: Encouraging Experimental Results on Learning CNF. Machine Learning 19 (1): 79-92 (1995) Bradley L. Richards , Raymond J. Mooney: Automated Refinement of First-Order Horn-Clause Domain Theories. Machine Learning 19 (2): 95-131 (1995) Cynthia A. Thompson , Raymond J. Mooney: Inductive Learning For Abductive Diagnosis. AAAI 1994 : 664-669 John M. Zelle , Raymond J. Mooney: Inducing Deterministic Prolog Parsers from Treebanks: A Machine Learning Approach. AAAI 1994 : 748-753 J. Jeffrey Mahoney , Raymond J. Mooney: Comparing Methods for Refining Certainty-Factor Rule-Bases. ICML 1994 : 173-180 John M. Zelle , Raymond J. Mooney, Joshua B. Konvisser : Combining Top-down and Bottom-up Techniques in Inductive Logic Programming. ICML 1994 : 343-351 Dirk Ourston , Raymond J. Mooney: Theory Refinement Combining Analytical and Empirical Methods. Artif. Intell. 66 (2): 273-309 (1994) Raymond J. Mooney, John M. Zelle : Integrating ILP and EBL. SIGART Bulletin 5 (1): 12-21 (1994) John M. Zelle , Raymond J. Mooney: Learning Semantic Grammars with Constructive Inductive Logic Programming. AAAI 1993 : 817-822 John M. Zelle , Raymond J. Mooney: Combining FOIL and EBG to Speed-up Logic Programs. IJCAI 1993 : 1106-1113 Paul T. Baffes , Raymond J. Mooney: Symbolic Revision of Theories with M-of-N Rules. IJCAI 1993 : 1135-1142 Paul T. Baffes , Raymond J. Mooney: Extending Theory Refinement to M-of-N Rules. Informatica (Slovenia) 17 (4): (1993) Raymond J. Mooney: Induction Over the Unexplained: Using Overly-General Domain Theories to Aid Concept Learning. Machine Learning 10 : 79-110 (1993) Bradley L. Richards , Raymond J. Mooney: Learning Relations by Pathfinding. AAAI 1992 : 50-55 Hwee Tou Ng , Raymond J. Mooney: Abductive Plan Recognition and Diagnosis: A Comprehensive Empirical Evaluation. KR 1992 : 499-508 J. Jeffrey Mahoney , Raymond J. Mooney: Combining Neural and Symbolic Learning to Revise Probabilistic Rule Bases. NIPS 1992 : 107-114 Hwee Tou Ng , Raymond J. Mooney: An Efficient First-Order Horn-Clause Abduction System Based on the ATMS. AAAI 1991 : 494-499 Raymond J. Mooney, Dirk Ourston : Constructive Induction in Theory Refinement. ML 1991 : 178-182 Bradley L. Richards , Raymond J. Mooney: First-Order Theory Revision. ML 1991 : 447-451 Dirk Ourston , Raymond J. Mooney: Improving Shared Rules in Multiple Category Domain Theories. ML 1991 : 534-538 Jude W. Shavlik , Raymond J. Mooney, Geoffrey G. Towell : Symbolic and Neural Learning Algorithms: An Experimental Comparison. Machine Learning 6 : 111-143 (1991) Hwee Tou Ng , Raymond J. Mooney: On the Role of Coherence in Abductive Explanation. AAAI 1990 : 337-342 Dirk Ourston , Raymond J. Mooney: Changing the Rules: A Comprehensive Approach to Theory Refinement. AAAI 1990 : 815-820 Raymond J. Mooney: Learning Plan Schemata From Observation: Explanation-Based Learning for Plan Recognition. Cognitive Science 14 (4): 483-509 (1990) Raymond J. Mooney: The Effect of Rule Use on the Utility of Explanation-Based Learning. IJCAI 1989 : 725-730 Raymond J. Mooney, Jude W. Shavlik , Geoffrey G. Towell , Alan Gove : An Experimental Comparison of Symbolic and Connectionist Learning Algorithms. IJCAI 1989 : 775-780 Douglas H. Fisher , Kathleen B. McKusick , Raymond J. Mooney, Jude W. Shavlik , Geoffrey G. Towell : Processing Issues in Comparisons of Symbolic and Connectionist Learning Systems. ML 1989 : 169-173 Raymond J. Mooney, Dirk Ourston : Induction Over the Unexplained: Integrated Learning of Concepts with Both Explainable and Conventional Aspects. ML 1989 : 5-7 Raymond J. Mooney: Generalizing the Order of Operators in Macro-Operators. ML 1988 : 270-283 Raymond J. Mooney, Scott Bennett : A Domain Independent Explanation-Based Generalizer. AAAI 1986 : 551-555 Gerald DeJong , Raymond J. Mooney: Explanation-Based Learning: An Alternative View. Machine Learning 1 (2): 145-176 (1986) Raymond J. Mooney, Gerald DeJong : Learning Schemata for Natural Language Processing. IJCAI 1985 : 681-687 1 [ 21 ] [ 22 ] [ 41 ] 2 [ 59 ] [ 68 ] [ 79 ] 3 [ 56 ] [ 59 ] [ 68 ] [ 70 ] [ 71 ] [ 79 ] [ 80 ] 4 [ 3 ] 5 [ 64 ] [ 65 ] [ 67 ] [ 70 ] [ 71 ] 6 [ 43 ] 7 [ 74 ] [ 75 ] [ 77 ] [ 78 ] 8 [ 33 ] [ 34 ] [ 46 ] [ 51 ] [ 53 ] [ 62 ] 9 [ 48 ] 10 [ 64 ] 11 [ 1 ] [ 2 ] 12 [ 80 ] 13 [ 40 ] [ 44 ] 14 [ 64 ] 15 [ 6 ] 16 [ 77 ] 17 [ 56 ] [ 79 ] 18 [ 7 ] 19 [ 42 ] [ 45 ] 20 [ 77 ] [ 84 ] 21 [ 27 ] 22 [ 79 ] 23 [ 80 ] 24 [ 17 ] [ 28 ] 25 [ 77 ] 26 [ 6 ] 27 [ 61 ] [ 66 ] [ 69 ] [ 72 ] [ 73 ] [ 76 ] [ 81 ] [ 82 ] [ 83 ] 28 [ 69 ] 29 [ 61 ] 30 [ 55 ] [ 57 ] [ 60 ] 31 [ 11 ] [ 16 ] [ 18 ] 32 [ 5 ] [ 10 ] [ 13 ] [ 15 ] [ 26 ] 33 [ 56 ] 34 [ 73 ] [ 81 ] 35 [ 47 ] 36 [ 77 ] 37 [ 64 ] 38 [ 14 ] [ 19 ] [ 31 ] 39 [ 49 ] [ 54 ] 40 [ 73 ] [ 83 ] 41 [ 69 ] 42 [ 6 ] [ 7 ] [ 12 ] 43 [ 38 ] 44 [ 82 ] 45 [ 58 ] 46 [ 30 ] [ 51 ] [ 52 ] [ 63 ] 47 [ 6 ] [ 7 ] [ 12 ] 48 [ 77 ] [ 84 ] 49 [ 83 ] 50 [ 23 ] [ 24 ] [ 25 ] [ 27 ] [ 29 ] [ 35 ] [ 39 ] ![]() ©2006 Association for Computing Machinery |