Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005
About DiSC 2
Editorial Bo
Acknowledgem
DiSC'06 Site
Search DiSC'
<<<Author Index>>>
Copyright No

Raymond J. Mooney

Papers on DiSC'06


Mining Knowledge from Text Using Information Extraction

Publications


Note: Links lead to the DBLP on the Web.

Raymond J. Mooney

Rohit J. Kate , Yuk Wah Wong , Raymond J. Mooney: Learning to Transform Natural to Formal Languages. AAAI 2005 : 1062-1068

Prem Melville , Stewart M. Yang , Maytal Saar-Tsechansky , Raymond J. Mooney: Active Learning for Probability Estimation Using Jensen-Shannon Divergence. ECML 2005 : 268-279

Yuk Lai Suen , Prem Melville , Raymond J. Mooney: Combining Bias and Variance Reduction Techniques for Regression Trees. ECML 2005 : 741-749

Prem Melville , Foster J. Provost , Raymond J. Mooney: An Expected Utility Approach to Active Feature-Value Acquisition. ICDM 2005 : 745-748

Brian Kulis , Sugato Basu , Inderjit S. Dhillon , Raymond J. Mooney: Semi-supervised graph clustering: a kernel approach. ICML 2005 : 457-464

Arindam Banerjee , Chase Krumpelman , Joydeep Ghosh , Sugato Basu , Raymond J. Mooney: Model-based overlapping clustering. KDD 2005 : 532-537

Razvan C. Bunescu , Raymond J. Mooney: Subsequence Kernels for Relation Extraction. NIPS 2005

Razvan C. Bunescu , Ruifang Ge , Rohit J. Kate , Edward M. Marcotte , Raymond J. Mooney, Arun K. Ramani , Yuk Wah Wong : Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine 33 (2): 139-155 (2005)

Prem Melville , Raymond J. Mooney: Creating diversity in ensembles using artificial data. Information Fusion 6 (1): 99-111 (2005)

Raymond J. Mooney, Razvan C. Bunescu : Mining knowledge from text using information extraction. SIGKDD Explorations 7 (1): 3-10 (2005)

Razvan C. Bunescu , Raymond J. Mooney: Collective Information Extraction with Relational Markov Networks. ACL 2004 : 438-445

Prem Melville , Maytal Saar-Tsechansky , Foster J. Provost , Raymond J. Mooney: Active Feature-Value Acquisition for Classifier Induction. ICDM 2004 : 483-486

Prem Melville , Raymond J. Mooney: Diverse ensembles for active learning. ICML 2004

Mikhail Bilenko , Sugato Basu , Raymond J. Mooney: Integrating constraints and metric learning in semi-supervised clustering. ICML 2004

Sugato Basu , Mikhail Bilenko , Raymond J. Mooney: A probabilistic framework for semi-supervised clustering. KDD 2004 : 59-68

Prem Melville , Nishit Shah , Lilyana Mihalkova , Raymond J. Mooney: Experiments on Ensembles with Missing and Noisy Data. Multiple Classifier Systems 2004 : 293-302

Sugato Basu , Arindam Banerjee , Raymond J. Mooney: Active Semi-Supervision for Pairwise Constrained Clustering. SDM 2004

Mikhail Bilenko , Raymond J. Mooney: Employing Trainable String Similarity Metrics for Information Integration. IIWeb 2003 : 67-72

Prem Melville , Raymond J. Mooney: Constructing Diverse Classifier Ensembles using Artificial Training Examples. IJCAI 2003 : 505-512

Mikhail Bilenko , Raymond J. Mooney: Adaptive duplicate detection using learnable string similarity measures. KDD 2003 : 39-48

Mikhail Bilenko , Raymond J. Mooney, William W. Cohen , Pradeep Ravikumar , Stephen E. Fienberg : Adaptive Name Matching in Information Integration. IEEE Intelligent Systems 18 (5): 16-23 (2003)

Cynthia A. Thompson , Raymond J. Mooney: Acquiring Word-Meaning Mappings for Natural Language Interfaces. J. Artif. Intell. Res. (JAIR) 18 : 1-44 (2003)

Mary Elaine Califf , Raymond J. Mooney: Bottom-Up Relational Learning of Pattern Matching Rules for Information Extraction. Journal of Machine Learning Research 4 : 177-210 (2003)

Prem Melville , Raymond J. Mooney, Ramadass Nagarajan : Content-Boosted Collaborative Filtering for Improved Recommendations. AAAI/IAAI 2002 : 187-192

Un Yong Nahm , Raymond J. Mooney: Mining soft-matching association rules. CIKM 2002 : 681-683

Sugato Basu , Arindam Banerjee , Raymond J. Mooney: Semi-supervised Clustering by Seeding. ICML 2002 : 27-34

Lappoon R. Tang , Raymond J. Mooney: Using Multiple Clause Constructors in Inductive Logic Programming for Semantic Parsing. ECML 2001 : 466-477

Un Yong Nahm , Raymond J. Mooney: Mining Soft-Matching Rules from Textual Data. IJCAI 2001 : 979-986

Sugato Basu , Raymond J. Mooney, Krupakar V. Pasupuleti , Joydeep Ghosh : Evaluating the novelty of text-mined rules using lexical knowledge. KDD 2001 : 233-238

Un Yong Nahm , Raymond J. Mooney: A Mutually Beneficial Integration of Data Mining and Information Extraction. AAAI/IAAI 2000 : 627-632

Raymond J. Mooney, Loriene Roy : Content-based book recommending using learning for text categorization. ACM DL 2000 : 195-204

Mary Elaine Califf , Raymond J. Mooney: Relational Learning of Pattern-Match Rules for Information Extraction. AAAI/IAAI 1999 : 328-334

Cynthia A. Thompson , Raymond J. Mooney: Automatic Construction of Semantic Lexicons for Learning Natural Language Interfaces. AAAI/IAAI 1999 : 487-493

Cynthia A. Thompson , Mary Elaine Califf , Raymond J. Mooney: Active Learning for Natural Language Parsing and Information Extraction. ICML 1999 : 406-414

Raymond J. Mooney: Learning for Semantic Interpretation: Scaling Up without Dumbing Down. Learning Language in Logic 1999 : 57-66

Raymond J. Mooney, Loriene Roy : Content-Based Book Recommending Using Learning for Text Categorization CoRR cs.DL/9902011 : (1999)

Claire Cardie , Raymond J. Mooney: Guest Editors' Introduction: Machine Learning and Natural Language. Machine Learning 34 (1-3): 5-9 (1999)

Sowmya Ramachandran , Raymond J. Mooney: Theory Refinement of Bayesian Networks with Hidden Variables. ICML 1998 : 454-462

Mary Elaine Califf , Raymond J. Mooney: Advantages of Decision Lists and Implicit Negatives in Inductive Logic Programming. New Generation Comput. 16 (3): 263-281 (1998)

Ulf Hermjakob , Raymond J. Mooney: Learning Parse and Translation Decisions from Examples with Rich Context. ACL 1997 : 482-489

Tara A. Estlin , Raymond J. Mooney: Learning to Improve both Efficiency and Quality of Planning. IJCAI 1997 : 1227-1233

Eric Brill , Raymond J. Mooney: An Overview of Empirical Natural Language Processing. AI Magazine 18 (4): 13-24 (1997)

Ulf Hermjakob , Raymond J. Mooney: Learning Parse and Translation Decisions From Examples With Rich Context CoRR cmp-lg/9706002 : (1997)

Paul T. Baffes , Raymond J. Mooney: A Novel Application of Theory Refinement to Student Modeling. AAAI/IAAI, Vol. 1 1996 : 403-408

Tara A. Estlin , Raymond J. Mooney: Multi-Strategy Learning of Search Control for Partial-Order Planning. AAAI/IAAI, Vol. 1 1996 : 843-848

John M. Zelle , Raymond J. Mooney: Learning to Parse Database Queries Using Inductive Logic Programming. AAAI/IAAI, Vol. 2 1996 : 1050-1055

Siddarth Subramanian , Raymond J. Mooney: Qualitative Multiple-Fault Diagnosis of Continuous Dynamic Systems Using Behavioral Modes. AAAI/IAAI, Vol. 2 1996 : 965-970

Raymond J. Mooney: Inductive Logic Programming for Natural Language Processing. Inductive Logic Programming Workshop 1996 : 3-22

Raymond J. Mooney: Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning CoRR cmp-lg/9612001 : (1996)

John M. Zelle , Raymond J. Mooney: Comparative results on using inductive logic programming for corpus-based parser construction. Learning for Natural Language Processing 1995 : 355-369

Raymond J. Mooney, Mary Elaine Califf : Learning the past tense of English verbs using inductive logic programming. Learning for Natural Language Processing 1995 : 370-384

Raymond J. Mooney, Mary Elaine Califf : Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs. J. Artif. Intell. Res. (JAIR) 3 : 1-24 (1995)

Raymond J. Mooney: Encouraging Experimental Results on Learning CNF. Machine Learning 19 (1): 79-92 (1995)

Bradley L. Richards , Raymond J. Mooney: Automated Refinement of First-Order Horn-Clause Domain Theories. Machine Learning 19 (2): 95-131 (1995)

Cynthia A. Thompson , Raymond J. Mooney: Inductive Learning For Abductive Diagnosis. AAAI 1994 : 664-669

John M. Zelle , Raymond J. Mooney: Inducing Deterministic Prolog Parsers from Treebanks: A Machine Learning Approach. AAAI 1994 : 748-753

J. Jeffrey Mahoney , Raymond J. Mooney: Comparing Methods for Refining Certainty-Factor Rule-Bases. ICML 1994 : 173-180

John M. Zelle , Raymond J. Mooney, Joshua B. Konvisser : Combining Top-down and Bottom-up Techniques in Inductive Logic Programming. ICML 1994 : 343-351

Dirk Ourston , Raymond J. Mooney: Theory Refinement Combining Analytical and Empirical Methods. Artif. Intell. 66 (2): 273-309 (1994)

Raymond J. Mooney, John M. Zelle : Integrating ILP and EBL. SIGART Bulletin 5 (1): 12-21 (1994)

John M. Zelle , Raymond J. Mooney: Learning Semantic Grammars with Constructive Inductive Logic Programming. AAAI 1993 : 817-822

John M. Zelle , Raymond J. Mooney: Combining FOIL and EBG to Speed-up Logic Programs. IJCAI 1993 : 1106-1113

Paul T. Baffes , Raymond J. Mooney: Symbolic Revision of Theories with M-of-N Rules. IJCAI 1993 : 1135-1142

Paul T. Baffes , Raymond J. Mooney: Extending Theory Refinement to M-of-N Rules. Informatica (Slovenia) 17 (4): (1993)

Raymond J. Mooney: Induction Over the Unexplained: Using Overly-General Domain Theories to Aid Concept Learning. Machine Learning 10 : 79-110 (1993)

Bradley L. Richards , Raymond J. Mooney: Learning Relations by Pathfinding. AAAI 1992 : 50-55

Hwee Tou Ng , Raymond J. Mooney: Abductive Plan Recognition and Diagnosis: A Comprehensive Empirical Evaluation. KR 1992 : 499-508

J. Jeffrey Mahoney , Raymond J. Mooney: Combining Neural and Symbolic Learning to Revise Probabilistic Rule Bases. NIPS 1992 : 107-114

Hwee Tou Ng , Raymond J. Mooney: An Efficient First-Order Horn-Clause Abduction System Based on the ATMS. AAAI 1991 : 494-499

Raymond J. Mooney, Dirk Ourston : Constructive Induction in Theory Refinement. ML 1991 : 178-182

Bradley L. Richards , Raymond J. Mooney: First-Order Theory Revision. ML 1991 : 447-451

Dirk Ourston , Raymond J. Mooney: Improving Shared Rules in Multiple Category Domain Theories. ML 1991 : 534-538

Jude W. Shavlik , Raymond J. Mooney, Geoffrey G. Towell : Symbolic and Neural Learning Algorithms: An Experimental Comparison. Machine Learning 6 : 111-143 (1991)

Hwee Tou Ng , Raymond J. Mooney: On the Role of Coherence in Abductive Explanation. AAAI 1990 : 337-342

Dirk Ourston , Raymond J. Mooney: Changing the Rules: A Comprehensive Approach to Theory Refinement. AAAI 1990 : 815-820

Raymond J. Mooney: Learning Plan Schemata From Observation: Explanation-Based Learning for Plan Recognition. Cognitive Science 14 (4): 483-509 (1990)

Raymond J. Mooney: The Effect of Rule Use on the Utility of Explanation-Based Learning. IJCAI 1989 : 725-730

Raymond J. Mooney, Jude W. Shavlik , Geoffrey G. Towell , Alan Gove : An Experimental Comparison of Symbolic and Connectionist Learning Algorithms. IJCAI 1989 : 775-780

Douglas H. Fisher , Kathleen B. McKusick , Raymond J. Mooney, Jude W. Shavlik , Geoffrey G. Towell : Processing Issues in Comparisons of Symbolic and Connectionist Learning Systems. ML 1989 : 169-173

Raymond J. Mooney, Dirk Ourston : Induction Over the Unexplained: Integrated Learning of Concepts with Both Explainable and Conventional Aspects. ML 1989 : 5-7

Raymond J. Mooney: Generalizing the Order of Operators in Macro-Operators. ML 1988 : 270-283

Raymond J. Mooney, Scott Bennett : A Domain Independent Explanation-Based Generalizer. AAAI 1986 : 551-555

Gerald DeJong , Raymond J. Mooney: Explanation-Based Learning: An Alternative View. Machine Learning 1 (2): 145-176 (1986)

Raymond J. Mooney, Gerald DeJong : Learning Schemata for Natural Language Processing. IJCAI 1985 : 681-687

1 [ 21 ] [ 22 ] [ 41 ]

2 [ 59 ] [ 68 ] [ 79 ]

3 [ 56 ] [ 59 ] [ 68 ] [ 70 ] [ 71 ] [ 79 ] [ 80 ]

4 [ 3 ]

5 [ 64 ] [ 65 ] [ 67 ] [ 70 ] [ 71 ]

6 [ 43 ]

7 [ 74 ] [ 75 ] [ 77 ] [ 78 ]

8 [ 33 ] [ 34 ] [ 46 ] [ 51 ] [ 53 ] [ 62 ]

9 [ 48 ]

10 [ 64 ]

11 [ 1 ] [ 2 ]

12 [ 80 ]

13 [ 40 ] [ 44 ]

14 [ 64 ]

15 [ 6 ]

16 [ 77 ]

17 [ 56 ] [ 79 ]

18 [ 7 ]

19 [ 42 ] [ 45 ]

20 [ 77 ] [ 84 ]

21 [ 27 ]

22 [ 79 ]

23 [ 80 ]

24 [ 17 ] [ 28 ]

25 [ 77 ]

26 [ 6 ]

27 [ 61 ] [ 66 ] [ 69 ] [ 72 ] [ 73 ] [ 76 ] [ 81 ] [ 82 ] [ 83 ]

28 [ 69 ]

29 [ 61 ]

30 [ 55 ] [ 57 ] [ 60 ]

31 [ 11 ] [ 16 ] [ 18 ]

32 [ 5 ] [ 10 ] [ 13 ] [ 15 ] [ 26 ]

33 [ 56 ]

34 [ 73 ] [ 81 ]

35 [ 47 ]

36 [ 77 ]

37 [ 64 ]

38 [ 14 ] [ 19 ] [ 31 ]

39 [ 49 ] [ 54 ]

40 [ 73 ] [ 83 ]

41 [ 69 ]

42 [ 6 ] [ 7 ] [ 12 ]

43 [ 38 ]

44 [ 82 ]

45 [ 58 ]

46 [ 30 ] [ 51 ] [ 52 ] [ 63 ]

47 [ 6 ] [ 7 ] [ 12 ]

48 [ 77 ] [ 84 ]

49 [ 83 ]

50 [ 23 ] [ 24 ] [ 25 ] [ 27 ] [ 29 ] [ 35 ] [ 39 ]




©2006 Association for Computing Machinery