Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005
About DiSC 2
Editorial Bo
Acknowledgem
DiSC'06 Site
Search DiSC'
<<<Author Index>>>
Copyright No

Volker Tresp

Papers on DiSC'06


Multi-label informed latent semantic indexing

Publications


Note: Links lead to the DBLP on the Web.

Volker Tresp

Kai Yu , Shipeng Yu , Volker Tresp: Multi-Output Regularized Projection. CVPR (2) 2005 : 597-602

Yi Huang , Kai Yu , Matthias Schubert , Shipeng Yu , Volker Tresp, Hans-Peter Kriegel : Hierarchy-Regularized Latent Semantic Indexing. ICDM 2005 : 178-185

Zhao Xu , Volker Tresp, Kai Yu , Shipeng Yu , Hans-Peter Kriegel : Dirichlet enhanced relational learning. ICML 2005 : 1004-1011

Kai Yu , Volker Tresp, Anton Schwaighofer : Learning Gaussian processes from multiple tasks. ICML 2005 : 1012-1019

Shipeng Yu , Kai Yu , Volker Tresp: Soft Clustering on Graphs. NIPS 2005

Shipeng Yu , Kai Yu , Volker Tresp, Hans-Peter Kriegel : A Probabilistic Clustering-Projection Model for Discrete Data. PKDD 2005 : 417-428

Kai Yu , Shipeng Yu , Volker Tresp: Multi-label informed latent semantic indexing. SIGIR 2005 : 258-265

Kai Yu , Volker Tresp: Heterogenous Data Fusion via a Probabilistic Latent-Variable Model. ARCS 2004 : 20-30

Kai Yu , Shipeng Yu , Volker Tresp: Dirichlet Enhanced Latent Semantic Analysis. LWA 2004 : 221-226

Anton Schwaighofer , Volker Tresp, Kai Yu : Learning Gaussian Process Kernels via Hierarchical Bayes. NIPS 2004

Kai Yu , Volker Tresp, Shipeng Yu : A nonparametric hierarchical bayesian framework for information filtering. SIGIR 2004 : 353-360

Kai Yu , Anton Schwaighofer , Volker Tresp, Xiaowei Xu , Hans-Peter Kriegel : Probabilistic Memory-Based Collaborative Filtering. IEEE Trans. Knowl. Data Eng. 16 (1): 56-69 (2004)

Michael Haft , Reimar Hofmann , Volker Tresp: Generative binary codes. Pattern Anal. Appl. 6 (4): 269-284 (2004)

Kai Yu , Wei-Ying Ma , Volker Tresp, Zhao Xu , Xiaofei He , HongJiang Zhang , Hans-Peter Kriegel : Knowing a tree from the forest: art image retrieval using a society of profiles. ACM Multimedia 2003 : 622-631

Zhao Xu , Xiaowei Xu , Kai Yu , Volker Tresp: A Hybrid Relevance-Feedback Approach to Text Retrieval. ECIR 2003 : 281-293

Zhao Xu , Kai Yu , Volker Tresp, Xiaowei Xu , Jizhi Wang : Representative Sampling for Text Classification Using Support Vector Machines. ECIR 2003 : 393-407

Volker Tresp, Kai Yu : An Introduction to Nonparametric Hierarchical Bayesian Modelling with a Focus on Multi-agent Learning. European Summer School on Multi-AgentControl 2003 : 290-312

Anton Schwaighofer , Marian Grigoras , Volker Tresp, Clemens Hoffmann : GPPS: A Gaussian Process Positioning System for Cellular Networks. NIPS 2003

Kai Yu , Anton Schwaighofer , Volker Tresp, Wei-Ying Ma , HongJiang Zhang : Collaborative Ensemble Learning: Combining Collaborative and Content-Based Information Filtering via Hierarchical Bayes. UAI 2003 : 616-623

Kai Yu , Xiaowei Xu , Anton Schwaighofer , Volker Tresp, Hans-Peter Kriegel : Removing redundancy and inconsistency in memory-based collaborative filtering. CIKM 2002 : 52-59

Anton Schwaighofer , Volker Tresp, Peter Mayer , Alexander K. Scheel , Gerhard Müller : The RA Scanner: Prediction of Rheumatoid Joint Inflammation Based on Laser Imaging. NIPS 2002 : 1409-1416

Anton Schwaighofer , Volker Tresp: Transductive and Inductive Methods for Approximate Gaussian Process Regression. NIPS 2002 : 953-960

Todd K. Leen , Thomas G. Dietterich , Volker Tresp: Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA MIT Press 2001

Joachim Horn , Thomas Birkhölzer , Oliver Hogl , Marco Pellegrino , Ruxandra Scheiterer , Kai-Uwe Schmidt , Volker Tresp: Knowledge Acquisition and Automated Generation of Bayesian Networks for a Medical Dialogue and Advisory System. AIME 2001 : 199-202

Volker Tresp, Anton Schwaighofer : Scalable Kernel Systems. ICANN 2001 : 285-291

Anton Schwaighofer , Volker Tresp: The Bayesian Committee Support Vector Machine. ICANN 2001 : 411-420

Volker Tresp: Scaling Kernel-Based Systems to Large Data Sets. Data Min. Knowl. Discov. 5 (3): 197-211 (2001)

Volker Tresp: The generalized Bayesian committee machine. KDD 2000 : 130-139

Volker Tresp: Mixtures of Gaussian Processes. NIPS 2000 : 654-660

Volker Tresp: A Bayesian Committee Machine. Neural Computation 12 (11): 2719-2741 (2000)

Thomas Briegel , Volker Tresp: Robust Neural Network Regression for Offline and Online Learning. NIPS 1999 : 407-413

Volker Tresp, Michael Haft , Reimar Hofmann : Mixture Approximations to Bayesian Networks. UAI 1999 : 639-646

Thomas Briegel , Volker Tresp: Fisher Scoring and a Mixture of Modes Approach for Approximate Inference and Learning in Nonlinear State Space Models. NIPS 1998 : 403-409

Jaakko Hollmén , Volker Tresp: Call-Based Fraud Detection in Mobile Communication Networks Using a Hierarchical Regime-Switching Model. NIPS 1998 : 889-895

Volker Tresp, Reimar Hofmann : Nonlinear Time-Series Prediction with Missing and Noisy Data. Neural Computation 10 (3): 731-747 (1998)

Michiaki Taniguchi , Volker Tresp: Combining Regularized Neural Networks. ICANN 1997 : 349-354

Volker Tresp, Thomas Briegel : A Solution for Missing Data in Recurrent Neural Networks with an Application to Blood Glucose Prediction. NIPS 1997

Reimar Hofmann , Volker Tresp: Nonlinear Markov Networks for Continuous Variables. NIPS 1997

Volker Tresp, Jürgen Hollatz , Subutai Ahmad : Representing Probabilistic Rules with Networks of Gaussian Basis Functions. Machine Learning 27 (2): 173-200 (1997)

Michiaki Taniguchi , Volker Tresp: Averaging Regularized Estimators. Neural Computation 9 (5): 1163-1178 (1997)

Volker Tresp, Ralph Neuneier , Hans-Georg Zimmermann : Early Brain Damage. NIPS 1996 : 669-675

Reimar Hofmann , Volker Tresp: Discovering Structure in Continuous Variables Using Bayesian Networks. NIPS 1995 : 500-506

Dirk Ormoneit , Volker Tresp: Improved Gaussian Mixture Density Estimates Using Bayesian Penalty Terms and Network Averaging. NIPS 1995 : 542-548

Volker Tresp: Die besonderen Eigenschaften Neuronaler Netze bei der Approximation von Funktionen. KI 9 (5): 12-17 (1995)

Volker Tresp, Michiaki Taniguchi : Combining Estimators Using Non-Constant Weighting Functions. NIPS 1994 : 419-426

Volker Tresp, Ralph Neuneier , Subutai Ahmad : Efficient Methods for Dealing with Missing Data in Supervised Learning. NIPS 1994 : 689-696

Volker Tresp, Subutai Ahmad , Ralph Neuneier : Training Neural Networks with Deficient Data. NIPS 1993 : 128-135

Martin F. Schlang , Volker Tresp, Klaus Abraham-Fuchs , Wolfgang Härer , P. Weismüller : Neuronale Netze zur Segmentierung und Clusterung von biomagnetischen Signalen. DAGM-Symposium 1992 : 180-185

Jürgen Hollatz , Volker Tresp: Integrating Rule-Based Knowledge into Neural Computing. DAGM-Symposium 1992 : 88-95

Subutai Ahmad , Volker Tresp: Some Solutions to the Missing Feature Problem in Vision. NIPS 1992 : 393-400

Volker Tresp, Jürgen Hollatz , Subutai Ahmad : Network Structuring and Training Using Rule-Based Knowledge. NIPS 1992 : 871-878

Volker Tresp: A Neural Architecture for 2D and 3D Vision. DAGM-Symposium 1991 : 437-445

Martin Röscheisen , Reimar Hofmann , Volker Tresp: Neural Control for Rolling Mills: Incorporating Domain Theories to Overcome Data Deficiency. NIPS 1991 : 659-666

Volker Tresp: A Neural Network Approach for Three-Dimensional Object Recognition. NIPS 1990 : 306-312

1 [ 7 ]

2 [ 4 ] [ 5 ] [ 8 ] [ 9 ] [ 16 ]

3 [ 31 ]

4 [ 18 ] [ 22 ] [ 24 ]

5 [ 32 ]

6 [ 37 ]

7 [ 23 ] [ 42 ]

8 [ 7 ]

9 [ 41 ]

10 [ 37 ]

11 [ 2 ] [ 13 ] [ 17 ] [ 20 ] [ 23 ] [ 42 ]

12 [ 31 ]

13 [ 4 ] [ 6 ] [ 16 ]

14 [ 21 ]

15 [ 31 ]

16 [ 53 ]

17 [ 35 ] [ 41 ] [ 43 ] [ 49 ] [ 52 ] [ 53 ]

18 [ 32 ]

19 [ 36 ] [ 41 ]

20 [ 34 ]

21 [ 34 ]

22 [ 8 ] [ 9 ] [ 14 ]

23 [ 12 ]

24 [ 31 ]

25 [ 2 ]

26 [ 34 ]

27 [ 31 ]

28 [ 7 ]

29 [ 31 ]

30 [ 53 ]

31 [ 29 ] [ 30 ] [ 33 ] [ 34 ] [ 35 ] [ 36 ] [ 37 ] [ 43 ] [ 45 ] [ 51 ]

32 [ 10 ] [ 15 ] [ 19 ]

33 [ 39 ]

34 [ 7 ]

35 [ 35 ] [ 39 ] [ 40 ] [ 43 ]

36 [ 39 ] [ 40 ] [ 41 ] [ 52 ]

37 [ 35 ] [ 36 ] [ 38 ] [ 39 ] [ 40 ] [ 41 ] [ 43 ] [ 44 ] [ 45 ] [ 46 ] [ 47 ] [ 48 ] [ 49 ] [ 50 ] [ 51 ] [ 52 ] [ 53 ] [ 54 ]

38 [ 44 ] [ 46 ] [ 48 ] [ 49 ] [ 50 ] [ 52 ] [ 53 ] [ 54 ]

39 [ 36 ] [ 41 ]

40 [ 14 ]




©2006 Association for Computing Machinery