Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
<<< = IQIS'05 Pape>>>
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

An Event Based Framework for Improving Information Quality That Integrates Baseline Models, Causal Models and Formal Reference Models


Joseph Bugajski, Robert L. Grossman, Eric Sumner, and Zhao Tang

  View Paper (PDF)  

Return to Paper Session 1: Quality Models


Abstract

We introduce a framework for improving information quality in complex distributed systems that integrates: 1) Analytic models that describe baseline values for attributes and combinations of attributes and components that detect statistically significant changes from baselines. These models determine whether a significant change has occurred, and if so, when. 2) Casual models that help determine why a statistically significant change has occurred and what its impact is. These models focus on the reasons for a change. 3) Formal business and technical reference models so that data and information quality problems are less likely to occur in the future. In this note, we focus on the first two types of models and describe how this framework applies to data quality problems associated with electronic payments transactions and highway traffic patterns.


©2006 Association for Computing Machinery