Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
<<< = SIGIR'05 Pap>>>
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

A study of the dirichlet priors for term frequency normalisation


Ben He and Iadh Ounis

  View Paper (PDF)  

Return to Theory 3


Abstract

In Information Retrieval (IR), the Dirichlet Priors have been applied to the smoothing technique of the language modeling approach. In this paper, we apply the Dirichlet Priors to the term frequency normalisation of the classical BM25 probabilistic model and the Divergence from Randomness PL2 model. The contributions of this paper are twofold. First, through extensive experiments on four TREC collections, we show that the newly generated models, to which the Dirichlet Priors normalisation is applied, provide robust and effective performance. Second, we propose a novel theoretically-driven approach to the automatic parameter tuning of the Dirichlet Priors normalisation. Experiments show that this tuning approach optimises the retrieval performance of the newly generated Dirichlet Priors-based weighting models.

BIBTEX


@inproceedings{1076114,
  author = {Ben He and Iadh Ounis},
  title = {A study of the dirichlet priors for term frequency normalisation},
  booktitle = {SIGIR '05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval},
  year = {2005},
  isbn = {1-59593-034-5},
  pages = {465--471},
  location = {Salvador, Brazil},
  doi = {http://doi.acm.org/10.1145/1076034.1076114},
  publisher = {ACM Press},
  address = {New York, NY, USA},
  
}



©2006 Association for Computing Machinery