Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
<<< = SIGKDD'05 Pa>>>
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

Consistent Bipartite Graph Co-Partitioning for Star-Structured High-Order Heterogeneous Data Co-Clustering


Bin Gao, Tie-Yan Liu, Qian-Sheng Cheng, and Wei-Ying Ma

  View Paper (PDF)  

Return to Research Session 8 [Clustering]


Abstract

Heterogeneous data co-clustering has attracted more and more attention in recent years due to its high impact on various applications. While the co-clustering algorithms for two types of heterogeneous data (denoted by pair-wise co-clustering), such as documents and terms, have been well studied in the literature, the work on more types of heterogeneous data (denoted by high-order co-clustering) is still very limited. As an attempt in this direction, in this paper, we worked on a specific case of high-order co-clustering in which there is a central type of objects that connects the other types so as to form a star structure of the inter-relationships. Actually, this case could be a very good abstract for many real-world applications, such as the co-clustering of categories, documents and terms in text mining. In our philosophy, we treated such kind of problems as the fusion of multiple pair-wise co-clustering sub-problems with the constraint of the star structure. Accordingly, we proposed the concept of consistent bipartite graph co-partitioning, and developed an algorithm based on semi-definite programming (SDP) for efficient computation of the clustering results. Experiments on toy problems and real data both verified the effectiveness of our proposed method.


©2006 Association for Computing Machinery