Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
<<< = TKDE'05 Pape>>>
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

Data mining for case-based reasoning in high-dimensional biological domains


Niloofar Arshadi and Igor Jurisica

  View Paper (PDF)  

Return to August 2005, Volume 17, Issue 8


Abstract

Case-based reasoning (CBR) is a suitable paradigm for class discovery in molecular biology, where the rules that define the domain knowledge are difficult to obtain and the number and the complexity of the rules affecting the problem are too large for formal knowledge representation. To extend the capabilities of CBR, we propose the mixture of experts for case-based reasoning (MOE4CBR), a method that combines an ensemble of CBR classifiers with spectral clustering and logistic regression. Our approach not only achieves higher prediction accuracy, but also leads to the selection of a subset of features that have meaningful relationships with their class labels. We evaluate MOE4CBR by applying the method to a CBR system called TA3 - a computational framework for CBR systems. For two ovarian mass spectrometry data sets, the prediction accuracy improves from 80 percent to 93 percent and from 90 percent to 98.4 percent, respectively. We also apply the method to leukemia and lung microarray data sets with prediction accuracy improving from 65 percent to 74 percent and from 60 percent to 70 percent, respectively. Finally, we compare our list of discovered biomarkers with the lists of selected biomarkers from other studies for the mass spectrometry data sets.


©2006 Association for Computing Machinery