![]() ![]() ![]() |
![]() |
|
|
![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Return to Session 5: Query Processing and Optimization A framework for determining the shortest path and the distance between every pair of vertices on a spatial network is presented. The framework, termed SILC, uses path coherence between the shortest path and the spatial positions of vertices on the spatial network, thereby, resulting in an encoding that is compact in representation and fast in path and distance retrievals. Using this framework, a wide variety of spatial queries such as incremental nearest neighbor searches and spatial dist ... ![]() ©2006 Association for Computing Machinery |