Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
<<< = ICDM'05 Pape>>>
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

Hierarchy-Regularized Latent Semantic Indexing


Yi Huang, Kai Yu, Matthias Schubert, Shipeng Yu, and Hans-Peter Kriegel

  View Paper (PDF)  

Return to Session 9: Preprocessing Techniques and Feature Selection


Abstract

Organizing textual documents into a hierarchical taxonomy is a common practice in knowledge management. Beside textual features, the hierarchical structure of directories reflect additional and important knowledge annotated by experts. It is generally desired to incorporate this information into text mining processes. In this paper, we propose hierarchy-regularized latent semantic indexing, which encodes the hierarchy into a similarity graph of documents and then formulates an optimization problem mapping each document into a low dimensional vector space. The new feature space preserves the intrinsic structure of the original taxonomy and thus provides a meaningful basis for various learning tasks like visualization and classification. Our approach employs the information about class proximity and class specificity, and can naturally cope with multi-labeled documents. Our empirical studies show very encouraging results on two real-world data sets, the new Reuters (RCV1) benchmark and the Swissprot protein database.


©2006 Association for Computing Machinery