Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
<<< = SIGIR'05 Pap>>>
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

Linear discriminant model for information retrieval


Jianfeng Gao, Haoliang Qi, Xinsong Xia, and Jian-Yun Nie

  View Paper (PDF)  

Return to Theory 2


Abstract

This paper presents a new discriminative model for information retrieval (IR), referred to as linear discriminant model (LDM), which provides a flexible framework to incorporate arbitrary features. LDM is different from most existing models in that it takes into account a variety of linguistic features that are derived from the component models of HMM that is widely used in language modeling approaches to IR. Therefore, LDM is a means of melding discriminative and generative models for IR. We present two algorithms of parameter learning for LDM. One is to optimize the average precision (AP) directly using an iterative procedure. The other is a perceptron-based algorithm that minimizes the number of discordant document-pairs in a rank list. The effectiveness of our approach has been evaluated on the task of ad hoc retrieval using six English and Chinese TREC test sets. Results show that (1) in most test sets, LDM significantly outperforms the state-of-the-art language modeling approaches and the classical probabilistic retrieval model; (2) it is more appropriate to train LDM using a measure of AP rather than likelihood if the IR system is graded on AP; and (3) linguistic features (e.g. phrases and dependences) are effective for IR if they are incorporated properly.

BIBTEX


@inproceedings{1076085,
  author = {Jianfeng Gao and Haoliang Qi and Xinsong Xia and Jian-Yun Nie},
  title = {Linear discriminant model for information retrieval},
  booktitle = {SIGIR '05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval},
  year = {2005},
  isbn = {1-59593-034-5},
  pages = {290--297},
  location = {Salvador, Brazil},
  doi = {http://doi.acm.org/10.1145/1076034.1076085},
  publisher = {ACM Press},
  address = {New York, NY, USA},
  
}



©2006 Association for Computing Machinery