Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
<<< = TKDE'05 Pape>>>
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

MAFIA: a maximal frequent itemset algorithm


Douglas Burdick, Manuel Calimlim, Jason Flannick, Johannes Gehrke, and Tomi Yiu

  View Paper (PDF)  

Return to November 2005, Volume 17, Issue 11


Abstract

We present a new algorithm for mining maximal frequent itemsets from a transactional database. The search strategy of the algorithm integrates a depth-first traversal of the itemset lattice with effective pruning mechanisms that significantly improve mining performance. Our implementation for support counting combines a vertical bitmap representation of the data with an efficient bitmap compression scheme. In a thorough experimental analysis, we isolate the effects of individual components of MAFIA including search space pruning techniques and adaptive compression. We also compare our performance with previous work by running tests on very different types of data sets. Our experiments show that MAFIA performs best when mining long itemsets and outperforms other algorithms on dense data by a factor of three to 30.


©2006 Association for Computing Machinery