Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
<<< = ICDE'05 Pape>>>
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

Mining closed relational graphs with connectivity constraints


Xifeng Yan, Xianghong Zhou, and Jiawei Han

  View Paper (PDF)  

Return to Research Session 10: Clustering


Abstract

Relational graphs are widely used in modeling large scale networks such as biological networks and social networks. In a relational graph, each node represents a distinct entity while each edge represents a relationship between entities. Various algorithms were developed to discover interesting patterns from a single relational graph (Z. Wu et al., 1993). However, little attention has been paid to the patterns that are hidden in multiple relational graphs. One interesting pattern in relational graphs is frequent highly connected subgraph which can identify recurrent groups and clusters. In social networks, this kind of pattern corresponds to communities where people are strongly associated. For example, if several researchers co-author some papers, attend the same conferences, and refer their works from each other, it strongly indicates that they are studying the same research theme.


©2006 Association for Computing Machinery