Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
<<< = SIGIR'05 Pap>>>
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

Multi-labelled classification using maximum entropy method


Shenghuo Zhu, Xiang Ji, Wei Xu, and Yihong Gong

  View Paper (PDF)  

Return to Categorization and supervised machine learning


Abstract

Many classification problems require classifiers to assign each single document into more than one category, which is called multi-labelled classification. The categories in such problems usually are neither conditionally independent from each other nor mutually exclusive, therefore it is not trivial to directly employ state-of-the-art classification algorithms without losing information of relation among categories. In this paper, we explore correlations among categories with maximum entropy method and derive a classification algorithm for multi-labelled documents. Our experiments show that this method significantly outperforms the combination of single label approach.

BIBTEX


@inproceedings{1076082,
  author = {Shenghuo Zhu and Xiang Ji and Wei Xu and Yihong Gong},
  title = {Multi-labelled classification using maximum entropy method},
  booktitle = {SIGIR '05: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval},
  year = {2005},
  isbn = {1-59593-034-5},
  pages = {274--281},
  location = {Salvador, Brazil},
  doi = {http://doi.acm.org/10.1145/1076034.1076082},
  publisher = {ACM Press},
  address = {New York, NY, USA},
  
}



©2006 Association for Computing Machinery