Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
<<< = ICDM'05 Pape>>>
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

Template-Based Privacy Preservation in Classification Problems


Ke Wang, Benjamin C. M. Fung, and Philip S. Yu

  View Paper (PDF)  

Return to Session 12: Security and Privacy


Abstract

In this paper, we present a template-based privacy preservation to protect against the threats caused by data mining abilities. The problem has dual goals: preserve the information for a wanted classification analysis and limit the usefulness of unwanted sensitive inferences that may be derived from the data. Sensitive inferences are specified by a set of "privacy templates". Each template specifies the sensitive information to be protected, a set of identifying attributes, and the maximum association between the two. We show that suppressing the domain values is an effective way to eliminate sensitive inferences. For a large data set, finding an optimal suppression is hard, since it requires optimization over all suppressions. We present an approximate but scalable solution. We demonstrate the effectiveness of this approach on real life data sets.


©2006 Association for Computing Machinery