Welcome to D
SIGMOD 2005
 = Keynotes
 = Tutorials
<<< = SIGMOD'05 Pa>>>
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

To Do or Not To Do - The Dilemma of Disclosing Anonymized Data


Laks V. S. Lakshmanan, Raymond T. Ng, and Ganesh Ramesh

  View Paper (PDF)  

Return to Anonymity and Nondisclosure (Research)


Abstract

Decision makers of companies often face the dilemma of whether to release data for knowledge discovery, vis a vis the risk of disclosing proprietary or sensitive information. While there are various "sanitization" methods, in this paper we focus on anonymization, given its widespread use in practice. We give due diligence to the question of "just how safe the anonymized data is", in terms of protecting the true identities of the data objects. We consider both the scenarios when the hacker has no information, and more realistically, when the hacker may have partial information about items in the domain. We conduct our analyses in the context of frequent set mining. We propose to capture the prior knowledge of the hacker by means of a belief function, where an educated guess of the frequency of each item is assumed. For various classes of belief functions, which correspond to different degrees of prior knowledge, we derive formulas for computing the expected number of "cracks". While obtaining the exact values for the more general situations is computationally hard, we propose a heuristic called the O-estimate. It is easy to compute, and is shown to be accurate empirically with real benchmark datasets. Finally, based on the O-estimates, we propose a recipe for the decision makers to resolve their dilemma.


©2006 Association for Computing Machinery