Welcome to D
SIGMOD 2005
PODS 2005
SIGMOD-RECOR
CIDR 2005
CIKM 2005
COMAD 2005
CVDB 2005
DaMoN 2005
Data Enginee
DEBS05
DMSN 2005
DOLAP 2005
GIR 2005
GIS 2005
Hypertext 20
ICDE 2005
ICDM 2005
IHIS 2005
IQIS 2005
JCDL 2005
<<< = JCDL'05 Pape>>>
KRAS 2005
MDM 2005
MIR 2005
MobiDE 2005
P2PIR 2005
RIDE 2005
SBBD 2005
SIGIR 2005
SIGIR-FORUM
SIGKDD 2005
SIGKDD-EXP
SSDBM 2005
TIME 2005
TKDE 2005
TODS 2005
VLDB 2005
VLDBJ 2005
WebDB 2005
WIDM 2005

What's there and what's not?: focused crawling for missing documents in digital libraries


Ziming Zhuang, Rohit Wagle, and C. Lee Giles

  View Paper (PDF)  

Return to Tools and techniques track: applying machine learning to collection development


Abstract

Some large scale topical digital libraries, such as CiteSeer, harvest online academic documents by crawling open-access archives, university and author homepages, and authors' self-submissions. While these approaches have so far built reasonable size libraries, they can suffer from having only a portion of the documents from specific publishing venues. We propose to use alternative online resources and techniques that maximally exploit other resources to build the complete document collection of any given publication venue.We investigate the feasibility of using publication metadata to guide the crawler towards authors' homepages to harvest what is missing from a digital library collection. We collect a real-world dataset from two Computer Science publishing venues, involving a total of 593 unique authors over a time frame of 1998 to 2004. We then identify the missing papers that are not indexed by CiteSeer. Using a fully automatic heuristic-based system that has the capability of locating authors' homepages and then using focused crawling to download the desired papers, we demonstrate that it is practical to harvest using a focused crawler academic papers that are missing from our digital library. Our harvester achieves a performance with an average recall level of 0.82 overall and 0.75 for those missing documents. Evaluation of the crawler's performance based on the harvest rate shows definite advantages over other crawling approaches and consistently outperforms a defined baseline crawler on a number of measures.


©2006 Association for Computing Machinery